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Abstract. A brief review of recent advances in neutron scat-
tering studies of low-dimensional quantum magnets is fol-
lowed by a particular example. The separation of single-
particle and continuum states in the weakly coupled S = 1/2
chains system BaCu2Si2O7 is described in some detail.

PACS: 75.40.Gb; 75.50.Ee; 75.10.Jm

For the last two decades, low-dimensional quantum magnets
have been the subject if intensive neutron scattering stud-
ies. One of the main reasons for this steady interest is that
low-dimensional systems are simple models of magnetism
that demonstrate a broad spectrum of complex quantum-
mechanical phenomena. In many cases quantum magnets are
desribed by simple Hamiltonians with few parameters. The-
oretical and numerical studies of these models can be di-
rectly compared to experiment at the quantitative level, of-
ten yielding remarkable agreement, and provide guidance in
the data analysis. Neutron scattering techniques are particu-
larly well suited for studying real low-dimensional magnets.
Indeed, they provide direct measurements of the spin corre-
lation function S(ω), that carries significant physical infor-
mation and is the ultimate result of most theoretical calcu-
lations. Moreover, in most known low-dimensional magnets
the energy and length scales of magnetic interactions per-
fectly match those probed by thermal or cold neutrons. It will
not be an overstatement to say that the development of the
entire field of low-dimensional magnetism has been driven
by neutron experiments more than by any other experimental
technique.

Two decades of research and huge amounts of beam time
yielded a fairly complete understanding of the most basic
one-dimensional models. To mention only a few milestones,
we have to recall the study of local excitations in dimer
systems [1], the discovery of the famous Haldane gap [2]
and the observation of continuum excitations in S = 1/2
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Heisenberg antiferromagnets (AFs) [3, 4]. A number of re-
markable discoveries were made only recently. Among these
are studies of multi-magnon excitations [5], observation of
field-induced incommensurability in S = 1/2 systems [6], the
spin-Peierls compound CuGeO3 [7], continuum states [8] and
field-induced ordering [9] in Haldane-gap antiferromagnets,
and the effect of staggered fields on quantum spin chains [10].
These new studies were enabled by the discovery of new
model materials, the development of new experimental tech-
niques and the perfection of data analysis procedures.

Today, the general trend in low-dimensional magnetism
is to capitalize on the accumulated knowledge of the ba-
sics and move on to more complex problems. Among the
new and rapidly progressing directions of research are effects
of randomness and doping in quantum spin chains [11–13],
the interplay between charge and spin degrees of freedom
[14], new physics in highly frustrated quantum antiferromag-
nets [15], and the crossover regime from “quantum” to “clas-
sical” magnetism. In this paper we cover as many of these
new studies as possible. To keep it readable, however, below
we shall concentrate on just one example, namely the dimen-
sional crossover in weakly interacting S = 1/2 Heisenberg
spin chains.

At the heart of the matter is a very old controversy. As far
back as 1931 H. Bethe exactly solved the ground state of the
one-dimensional (1D) S = 1/2 quantum Heisenberg antifer-
romagnet [16]. The main result was that even at T = 0 there is
no long-range order in the system, and no Bragg peaks should
be visible in a neutron diffraction experiment. A year later,
L. Néel proposed the famous two-sublattice model of anti-
ferromagnetism [17], characterized by staggered long-range
magnetic order that produces new magnetic Bragg peaks in
the diffraction pattern. In 1933 L. Landau published yet an-
other paper on the subject, stressing the fact that the two-
sublattice model is not even an eigenstate of the Heisenberg
Hamiltonian, and therefore cannot possibly be the ground
state [18]. Now we of course know that for a vast majority
of 2D and 3D materials, the ground state does indeed look
remarkably like the Neel state. Landau’s arguments are also
correct, and quantum fluctuations are relevant. In two and
three dimensions they usually result in minor corrections. The
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lower the effective dimensionality, the more these fluctuations
are important, and in the purely 1D case they are capable
of destroying long-range order altogether. It is now well un-
derstood that weakly coupled S = 1/2 Heisenberg chains are
weakly ordered: the Neel temperature TN scales roughly as
the strength of inter-chain coupling J ′, while the sublattice
saturation moment at T → 0 behaves as J ′/J , J being the in-
chain exchange constant. Both quantities vanish as J ′ → 0.
It is important to note that long-range ordering occurs for
arbitrary small J ′. For example, correlated glassy freezing
with an ordered moment of only 0.03 µB have recent been
detected in the extremely one-dimensional material SrCuO2
with J ′/J ≈ 7 ×10−4 [19].

The most interseting question is what happens to the exci-
tation spectrum of a single S = 1/2 antiferromagnetic quan-
tum spin chain when inter-chain coupling is “switched on”.
Let us first consider the extreme cases. In the 3D limit, when
J ′ ≈ J we are dealing with a ground state that is very simi-
lar to the Neel state. The excitation spectrum is then dom-
inated by single-particle states that correspond to a preses-
sion of the ordered moment around its equilibrium direction.
These particles, known as spin waves, carry a total spin of
unity and and a spin projection Sz = ±1 onto the direction
of staggered moment. In the early days it was believed that
in the other limiting case of a purely 1D AF the excitation
spectrum is described by a similar single-particle picture, al-
beit with strongly renormalized spin-wave velocity and band-
width [20]. It was later realized that spin dynamics in the
1D case is, in fact, qualitatively different. Since long-range
order is absent, so are the precession modes. The spectrum
contains no single-particle excitations and is instead a con-
tinuum of states [21–24]. An experimental confirmation of
this phenomenon was obtained in elegant neutron scattering
experiments on KCuF3 [3] and copper benzoate [4]. Modern
theories describe these continuum states as composed of pairs
of exotic S = 1/2 excitations called spinons. Unlike magnons,

Fig. 1a–c. Transverse dynamic struc-
ture factor of the 1D S = 1/2
Heisenberg AF. (a) Contains only
continuum excitations with a sin-
gularity on the lower bound. An
external staggered field (b) induces
a gap ∆ in the spectrum. The sin-
gularity separates from the lower
bound of the continuum giving
birth to single-particle excitations.
This picture is also observed in
coupled chains at the transverse
zone-boundary. In the latter case the
single-particle states take the role of
Goldstone modes (spin waves) and
their energy goes to zero at the 3D
AF zone center (c)

which are bosons and can be directly observed in an inelastic
neutron experiment, spinons carry S = 1/2, and are created or
destroyed only in pairs, much like domain walls in an Ising
magnet. The two-spinon continuum is three-fold degenerate
with pairs of spinons having a total spin of unity and projec-
tions on any given axis Sz = 0,±1. Note that while there are
only two polarizations for spin waves, spinon pairs come in
three different polarization flavors.

If the spin dynamics in the two limiting cases is qual-
itatively different, what happens in quasi-1D systems with
0 < J ′ 	 J? The presence of long-range order should pro-
duce order-parameter excitations, i.e., spin waves. But how
exactly are these single-particle states spawned from the con-
tinuum of inelastic scattering that dominates in the 1D system
model? Theoretically, the problem is not a simple one: since
isolated chains are quantum-critical, there is no “small” en-
ergy scale for inter-chain coupling. The latter, no matter how
small, cannot be treated through any kind of infinitesimal ex-
pansion. Nevertheless, a very simple and accurate physical
picture is provided by the chain mean field (MF) theory [25]
and the random phase approximation [26, 27], when these ap-
proaches are combined with exact results for isolated chains
in external staggered fields. In the ordered state each spin
chain is subject to an effective staggered exchange field gen-
erated by neighboring chains. A staggered field Hπ induces
a liner attractive potiential between spinons. As a result, the
lowest-energy excitations are spinon bound states, often re-
ferred to as “magnons” [26, 27]. This is illustrated in Fig. 1b.
The square root singularity on the lower bound of the two-
spinon continuum in the isolated chains [Fig. 1a] “separates”
and becomes a sharp magnon which is a δ function in energy
at any given wave vector [Fig. 1b, solid line]. The magnons
acquire a gap ∆ (also referred to as mass) that scales as H2/3

π .
Since there are three possible spin states for a pair of spinons,
there are three magnon branches. Two of these are polarized
perpendicular to Hπ and the induced staggered moment, and
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correspond to conventional precession modes (spin waves).
Including inter-cahin interactions within the random phase
approximation (RPA) gives these excitations a dispersion per-
pendicular to the chains. Their energy goes to zero at the 3D
zone center, i.e., at the location of magnetic Bragg peaks in
the ordered system [Fig. 1c, solid line]. The gap ∆ can still be
observed at the transverse zone boundary, where the behavior
of an isolated chain in a staggered field is exactly recovered
[Fig. 1b]. What remains of the two-spinon continuum in the
1D system is now seen as a three-magnon, rather than a two-
spinon continuum. Indeed, the attractive potential between
spinons is a confining one, and two spinons are permanently
bound into magnons, just like two quarks can be confined in
a meson. The continuum therefore has a gap of 2∆, i.e., twice
the characteristic magnon gap.

An experimental observation of such rich and unique be-
havior, the separation of single-particle and continuum states,
is a formidable challenge to neutron scattering. On the one
hand, a strongly 1D system with J ′ 
 J is desirable to max-
imize the fraction of the spectral weight contained in the
continuum, a feature notoriously difficult to observe. On the
other hand, J ′ should be large enough to yield a measurable
gap ∆ (preferably, a few meV). Finally, J should be small
enough to allow measurements with a wave vector resolution
better than ∆/v, where v = π/2J is the spin-wave velocity.
The two latter conditions are absolutely essential to resolving
the magnons at energy ∆ from the lower bound of the con-
tinuum at 2∆. The first model system that met these conflict-
ing requirements was KCuF3, a material with J = 17.5 meV,
TN = 39 and a saturation moment of m0 ≈ 0.5 µB. In this
compound the spin waves and continuum excitations could be
observed simultaneously [28].

Below we shall make the experimental case for separa-
tion of single-particle and continuum states using another
model quasi-1D material, namely BaCu2Si2O7. In this com-
pound J = 24 meV, TN = 9 K and m0 = 0.15 µB [29, 30],
i.e., BaCu2Si2O7 is more one-dimensional than KCuF3 is.
The S = 1/2 AF chains run along the c axis of the ortho-
rhombic crystal structure. The 1D AF zone center q‖ = π
is the (h, k, 1) reciprocal-space plane, and the magnetic
Bragg peak, characteristic of 3D long-range ordering is lo-
cated at (0,1,1). Despite the small saturation moment in
BaCu2Si2O7, its low-energy excitation spectrum (up to about
5 meV energy transfer) is dominated entirely by sharp single-
particle spin-wave-like excitations [31, 32]. Very high reso-
lution measurements performed using the IN14 cold-neutron
spectrometer at ILL failed to detect any intrinsic excita-
tion widths. Fig. 2 shows a series of constant-q scans that
measure the dispersion of these modes at the 1D AF zone-
center in the direction perpendicular to the chain axis. The
solid lines in Fig. 2 are a global fit to the data based on
a single-mode cross section for a classical antiferromag-
netic spin wave, convoluted with the spectrometer resolution
function [32]. Measurements of the spin-wave dispersion
along different reciprocal-space directions led to a fairly
complete picture of inter-chain interaction [30]. The ef-
fective MF inter-chain coupling constant was found to be
J ′ = 0.4 meV. The “magic point” where inter-chain interac-
tions cancel out at the RPA level is located at (0.5, 0.5, 1).
The energy of the spin wave at this wave vector is to be in-
terpreted as the gap ∆ induced in each individual chain by
their interactions with neighboring chains. Experimentally,
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Fig. 2. A series of constant-Q scans measured in BaCu2Si2O7 at T = 1.5 K
for different momentum transfers perpendicular to the chain axis. Lines rep-
resent a semi-global fit to the data as described in the text. The solid lines
in the basal plane show the spin-wave dispersion relation in this reciprocal-
space direction. The data are from [31]

for BaCu2Si2O7, ∆ = 2.5 meV. The observed low-energy
spectrum is totally consistent with theoretical predictions: at
energies below 2∆ transverse spin fluctuations in a weakly
coupled chains system behaves exactly as those in a classical
antiferromagnet.

The quantum-mechanical nature of the spin chains in
BaCu2Si2O7 becomes apparent on shorter time scales (larger
energy transfers). Figure 3 shows a series of constant-energy
scans accross the 1D AF zone center. At hω = 3 meV, using
the highest-resolution setup [Fig. 3a], one clerly sees two
well-resolved peaks that represent the low-energy single-
particle excitations. A fit of the classical spin-wave cross
section to the data is shown by the shaded area. The two
spin-wave peaks can not be resolved at hω = 3 meV using
a setup with coarser resolution [Fig. 3b]. However, at higher
energies, [Fig. 3c–f ] even the coarse-resolution configuration
should have been capable of resolving two separate peaks if
the single-particle picture still held (shaded areas). In con-
trast, the measured scans do not contain two separate peaks,
but instead show a single broad feature. Moreover, the spin
waves, for which intensity scales as 1/ω, are expected to
account for only a very small fraction of the total spectral
weight at high energy transfers [Fig. 3e,f ]. The remaining
scattering is to be attributed to the excitation continuum that
sets in at about 5 meV energy transfer and becomes progres-
sively more dominant at high energies. The bulk of the data
collected in different experimental configurations was ana-
lyzed in a global fit using a cross section that contained both
a single-mode and a continuum part. The cross section for
the continuum was chosen to match the one calculated ana-
lytically within the Sine-Gordon model [27]. The continuum
was assumed to have a gap of ∆c = 2∆ = 5 meV, i.e., ex-
actly twice the spin-wave gap at the “magic” reciprocal-space
point. In Fig. 3 the result of this global fit is shown in a solid
line, and the continuum contribution is represented by the
dashed line.

The fact that the continuum starts above a well-defined
gap energy ∆c, can be clearly seen in the wide-range
constant-q scans shown in Fig. 4. At this wave vector there
are to spin-wave peaks due to a non-trivial 3D structure fac-
tor of the slightly zig-zag spin chains in BaCu2Si2O7 (shaded
areas). At high energies there is additional broad scattering
not accounted for by the single-particle picture. The onset of
the continuum is signaled by an intensity dip at around 5 meV
(arrows). As in Fig. 3, the solid lines in Fig. 4 represent the
global fit, and the dashed line is the continuum part of the
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Fig. 3. A series of constant-E scans along the spin chains in BaCu2Si2O7.
Heavy solid lines represent a global fit to the data as described in the text.
Shaded areas are contributions of single-particle excitations. Dashed lines
show the continuum portion. The data are from [32]

cross section. If ∆c is treated as an adjustable parameter in the
fit, the refined value is ∆c = 4.8(2) meV, which is within the
error bar of the theoretical value ∆c = 2∆ meV.
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Fig. 4. Left: Typical constant-Q scans collected in BaCu2Si2O7 at the 1D
AF zone center by using different spectrometer configurations. Lines and
shaded areas are as in Fig. 3. Arrows indicate the slight dip in the observed
intensity that corresponds to the continuum energy gap ∆c. Right: Evo-
lution of the calculated FWHM resolution ellipsoids in the course of the
corresponding scans, plotted in projection onto the (l, hω) plane. Solid lines
represent the spin-wave dispersion relation. The data are from [32]

The continuum gap being twice the spin-wave gap is
a non-trivial result. All the data discussed above were col-
lected with scattering vectors almost parallel to the chain
axis. The ordered moment in BaCu2Si2O7 is parallel to the
chains as well, so the intrinsic polarization dependence of
the neutron scattering cross section ensures that all scans
represent transverse-polarized spin fluctuations. In conven-
tional SWT the lowest-energy transverse continuum exci-
tations are three-magnon states, since the magnons them-
selves are transverse-polarized. In the SWT, the transverse
continuum thus has a pseudogap of 3∆. A rigorous SWT
calculation for BaCu2Si2O7 gives ∆c = 7.5 meV [31, 32].
How is it possible that we are seeing continuum scatter-
ing at 2∆? The answer given by the quantum chain MF
model is that since there are three possible polarizations
for pairs of spinons Sz = 0,±1 (see above), there is a third
bound state (magnon) that is polarized parallel to the di-
rection of ordered moment. In a recent, elegant study this
longitudinal mode has been directly observed in KCuF3
by using unpolarized [33] and polarized [34] neutrons. The
longitudinal magnon is not visible in the BaCu2Si2O7data
shown above, due to polarization effects. However, it is the
longitudinal mode that enables a two-magnon transverse-
polarized continuum excitations with a gap ∆c = 2∆. In-
deed, a transverse state can be constructed from one lon-
gitudinal and one transverse magnon. In other words, the
fact that the continuum in BaCu2Si2O7 starts at 2∆ can



S5

be taken as indirect evidence for the longitudinal mode.
In the future it will be very important to perform neu-
tron experiments in a different scattering geometry, per-
haps using polarization analysis, to observe the longitudinal
mode in BaCu2Si2O7 directly, to corroborate the remarkable
results on KCuF3.

In summary, the seemingly simple model of weakly in-
teracting spin chains demonstrates such fundamenatal phe-
nomena of many-body quantum mechanics as mass gener-
ation, spinon confinement, and energy separation of “classi-
cal” and “quantum” spin dynamics. Studies of KCuF3 and
BaCu2Si2O7 shed light on the nebulous regime where 1D
quantum physics meets 3D “classical” magnetism and pro-
vide the experimental basis for some very sophisticated the-
oretical studies.
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