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Abstract. Quantum spin chains display complex cooperative phenomena that can be
explored in considerable detail through theory, numerical simulations, and experiments.
Here we review neutron scattering experiments that probe quantum spin chains in high
magnetic fields. Experiments on copper-containing organometallic systems show that
the uniform antiferromagnetic spin-1/2 chain has a gapless continuum of magnetic
excitations and is critical in zero field. Application of a magnetic field creates incom-
mensurate soft modes with a characteristic wave-vector that grows in proportion to the
magnetization. These experimental results are evidence that the spins-1/2 chain maps
to a one dimensional Luttinger liquid. Experiments on antiferromagnetic spin chains
built from spin-1 nickel atoms show a Haldane gap to bound triplet excitations and a
finite critical field that must be exceeded to induce magnetization at low temperatures.
These results indicate that the integer spin chain has an isolated singlet ground state
with hidden topological order. For both spin-1/2 and spin-1 systems, site alternation
leads to a field induced gap in the excitation spectrum.

1 Introduction

Cooperative phenomena in magnetism generally involve mesoscopic spin clusters
with classical dynamics. Consequently, quantum effects are seldom apparent in
macroscopic properties. Quasi-one-dimensional magnets are an exception be-
cause their long-range correlations are controlled by microscopic domain walls
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with quantum dynamics[1]. In these systems, quantum effects can therefore have
a profound impact on physical properties on all length scales. Consider for ex-
ample, a uniform spin chain with antiferromagnetic Heisenberg interactions at
T = 0. While half odd integer spin chains have quasi-long range order and a gap-
less spectrum, integer spin chains have a finite correlation length and an isolated
singlet ground state[2].

These one-dimensional quantum effects have consequences for macroscopic
properties of three-dimensional solids. In particular, there are transition metal
oxides and organometallic materials that contain arrays of weakly interacting
spin chains. For Cu-spins that represent spin-1/2 degrees of freedom, such an
array generally acquires long-range order at sufficiently low temperatures as
slowly fluctuating spin chains with quasi-long-range one-dimensional order de-
velop long-range inter-chain phase coherence. However, for quasi-one-dimensional
spin systems built from spin-1 Ni atoms, there is a critical value for inter-chain
coupling below which low temperature magnetic order cannot be achieved. Sys-
tems with sufficiently weak inter-chain coupling adopt a quasi-one-dimensional
cooperative singlet ground state at low temperatures without undergoing any
phase transitions.

Quantum effects also strongly affect the response of quasi-one-dimensional
magnetic systems to an applied magnetic field. For spin chains with a gap in their
excitation spectrum, there is a critical field that must be exceeded to induce mag-
netization at the absolute zero temperature. In addition, the magnetized states
of many isotropic quantum spin chains are expected to have incommensurate
low energy fluctuations, an effect that has no analogy in magnets with classical
dynamics[3].

In this paper, we shall review experiments that probe the magnetized states
of uniform antiferromagnetic spin-1/2 and spin-1 chains. The emphasis is on neu-
tron scattering experiments that can provide detailed information about atomic
scale dynamic correlations. After a brief summary of the neutron scattering tech-
nique, separate sections for spin-1/2 and spin-1 chains describe model systems,
zero field data, and finite field data. The experimental results are compared to
relevant theories. We end with a summary of results and a discussion of chal-
lenges that remain.

1.1 Magnetic Neutron Scattering

Neutrons interact with nuclei through the strong interaction and with electrons
through electromagnetic dipole-dipole interactions[4]. The corresponding scat-
tering cross sections for an atom with a partially filled electronic shell are of
order r2

0 for both interactions, r0 = (e2/mec
2) = 2.82 fm being the classical elec-

tron radius. The cross sections are sufficiently small that the Born approximation
is valid and the scattering processes can be described in terms of a differential
scattering cross section. The magnetic part of the cross section, which is of in-
terest here, can be written as follows[5]
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d2σ

dΩdE′ = (γr0)2|g2F (Q)|2
∑

αβ

(δαβ − Q̂αQ̂β)Sαβ(Q, ω). (1)

The scattering process is specified by the wave-vector transfer, Q = ki − kf

and the energy transfer h̄ω = EI − Ef to the sample. Furthermore, γ = 1.913
and g ≈ 2 are the spectroscopic g-factors of the neutron and the magnetic atom
respectively, and F (Q) is the magnetic form factor[6]. The interesting part of
Eq. (1) is the Fourier transformed two point dynamic spin correlation function:

Sαβ(Q, ω) =
1

2πh̄

∫
dteiωt 1

N

∑

RR′
< Sα

R(t)Sβ
R′(0) > e−iQ·(R−R′) (2)

Sαβ(Q, ω) can be be related to the generalized spin susceptibility through the
fluctuation dissipation theorem[5].

S(Q, ω) =
1

1− e−βh̄ω

χ′′(Q, ω)
π(gµB)2

(3)

where β = 1/kBT and χ′′ denotes the imaginary part of the generalized spin
susceptibility. S(Q, ω) is the natural juncture for theoretical and experimental
work on cooperative magnetic phenomena and magnetic neutron scattering is
the experimental technique that provides the most complete access to it.

Many of the neutron scattering experiments to be described in this article
were performed on the SPINS cold neutron spectrometer at the NIST Cen-
ter for Neutron Research, which is shown in Fig. 1. Neutrons from the cold

Fig. 1. The SPINS cold neutron spectrometer at the NIST Center for Neutron Research
in Gaithersburg, MD, USA where many of the experiments described in this paper were
performed. The tall cylindrical item marked Oxford, is a high field dilution refrigerator.
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source of the 20 MW NBSR reactor are transported to the instrument through
an evacuated rectangular glass structure with inner dimensions 6 cm by 12.5
cm. The inner walls of this neutron guide are coated with 58Ni, which com-
pletely reflects neutrons with an angle of incidence less than a critical angle
θc = 2.04 · 10−3Rad/Å× λ, where λ is the neutron wave-length. A horizontally
segmented pyrolytic graphite monochromator Bragg reflects a monochromatic
and vertically focused beam to the sample position. The incident beam energy
range is 2.3 meV to 14 meV and the relative energy resolution 2-8% depending
on the configuration. The neutron beam easily penetrates the aluminum vacuum
cans of cryogenic systems that provide appropriate thermodynamic conditions
for the sample.

The detection system is contained within a shielded volume to reduce back-
ground contributions from epithermal neutrons. The neutron detector is a 3He
proportional counter with greater than 90% detection efficiency for neutrons
with energies less than 15 meV. To reach the detector, neutrons scattered from
the sample must reflect from a pyrolytic graphite crystal. This ensures that, the
energy of detected neutrons is known by virtue of the fact that they must have
satisfied the Bragg conditions at this “analyzer” crystal. The SPINS instrument
offers much flexibility in configuring the detection system. In particular, the an-
alyzer consists of 11 vertical blades with a height of 15 cm and widths of 2.1
cm that can rotate independently about vertical axes. The analyzer is placed 91
cm from the sample where it can rotate about a vertical axis. The entire detec-
tion system in turn can rotate about the sample to access neutrons scattered in
different directions by the sample.

We used three basic detector configurations for the experiments reported
here. In the conventional “triple axis” mode, Soller collimators surrounding the
analyzer determine the scattering angle at the analyzer. Only three vertical
analyzer blades are used in this mode and the detector is then sensitive only
to a specific fixed neutron energy. To vary energy transfer, the incident beam
energy is changed by adjusting the scattering angle at the monochromator.

In the monochromatic focusing mode the final energy is also fixed, however,
the eleven blades of the segmented analyzer are set up to reflect neutrons with
a range of scattering angles from the sample onto a single channel detector. The
loss of wave-vector resolution perpendicular to the direction of the scattered
beam is not a problem for one-dimensional systems as the chain axis can be
oriented along kf where the wave-vector resolution is excellent. The monochro-
matic focusing mode enhances sensitivity by approximately a factor five over
the conventional triple axis configuration without increasing the fast neutron
background. It requires a weakly dispersive direction for the system of interest
and a single crystalline sample with low mosaic distribution.

The third configuration that we use is denoted the energy dispersive analyzer
mode. All analyzer blades are oriented parallel to the analyzer assembly so they
form a flat reflecting surface that subtends a solid angle of approximately 0.04 Sr
to the sample. Neutrons with varying sample scattering angles also have different
angles of incidence on the analyzer and hence the Bragg condition for reflection



Magnetized States of Quantum Spin Chains 5

varies across the surface of the analyzer. The beam reflected from the analyzer in
this mode has a horizontal divergence angle of approximately 10 degrees. After
passage through a radial collimator for background suppression, neutrons are
detected by a position sensitive detector. Splayed horizontally over the detector
are thus neutrons corresponding to a range of different values of Q and h̄ω, with
Q varying along the reciprocal lattice direction defined by the analyzer surface.
The dispersive analyzer mode enhances efficiency by approximately a factor five
over the conventional triple axis mode. Background tends to be higher than for
the monochromatic focusing mode but the configuration can be used for samples
that are dispersive throughout the horizontal plane or where the sample mosaic
distribution covers several degrees.

2 Antiferromagnetic Spin-1/2 Chain

The uniform antiferromagnetic spin-1/2 chain plays a special role in physics
because it is one of very few interacting quantum many body system, where
exact analytical results are available. The spin Hamiltonian reads

H = J
∑

n

Sn · Sn+1 − gµBH
∑

n

Sz
n, (4)

where J > 0 is the antiferromagnetic exchange constant and Sn are vector spin
operators for spin-1/2 degrees of freedom.

2.1 Theoretical results for the spin-1/2 chain

There is a steadily growing body of exact results available about the uniform
spin-1/2 chain, most of them based on the Bethe ansatz[7,8]. This correct ”guess”
for the ground state of the spin-1/2 chain enabled calculation of the ground state
energy per spin in the absence of a magnetic field[9] < H > /N = |J |2( 1

4 − ln 2).
Bethe’s ansatz was later used to derive thermodynamic properties including the
equal time spin correlation function

〈Si · Si+n〉 = (−1)nn−1, (5)

which indicates quasi-long-range antiferromagnetic order. It is also possible to
derive the wave functions and energies for the lowest energy excited states as a
function of wave-vector transfer[10]:

εL(q) =
π

2
J | sin q| (6)

The functional form of this expression is similar to the dispersion relation for spin
waves in a putative spin-1/2 one-dimensional antiferromagnet with exchange
constant πJ/2. However, Eq. 6 is not the dispersion relation for a long lived
quasiparticle, rather it represents the lower bound of a continuum of excited
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Fig. 2. Exact zero and finite field results for the XY spin-1/2 chain obtained through
the Jordan-Wigner transformation. The Heisenberg spin chain has qualitatively similar
properties as described in Ref. [14]. (a) Shows the band structure for spinons in the
unmagnetized state. (b) shows the corresponding exact kinematical limits of the two
spinon continuum. Arrows in (a) indicate scattering processes that map to the points
on frame (b). (c) shows the band structure for spinons in a magnetized state. The
exact boundaries [14] of the corresponding continuum in the longitudinal part of the
dynamic spin correlation function, S‡‡(q, ω), are shown in (d). The transverse part of
the dynamic spin correlation function is gapless for q = π.

states. It has been shown that the fundamental quasi-particles of the spin-1/2
chain are fermionic “spinons” that occupy a cosine band[11,12]

ε(q) =
π

2
J cos q. (7)

For the easy plane spin-1/2 chain, spinons do not interact and thus they form
an ideal one-dimensional degenerate fermi gas[13]. For isotropic interactions
(the Heisenberg case), there are strong interactions and spinons form a one-
dimensional Luttinger liquid. For the un-magnetized spinchain, the spinon band
is half filled as indicated in Fig. 2(a). Low energy excitations with wave-vector
transfer, q, correspond to annihilating a spinon with wave-vector q1 ≈ nπ and
creating a spinon with wave-vector q2 = nπ+q. Arrows in Fig. 2(a) indicate such
spinon scattering processes while points in Fig. 2(b) indicate the corresponding
values of wave-vector and energy transfer. The solid lines in Fig. 2(b) indicate
the kinematical limits for spinon excitations.

Neutron scattering can probe the kinematical limits of the spinon excita-
tion spectrum. The experiments are also sensitive to the matrix elements for
spin excitations. Specifically, the dynamic spin correlation function measured by
neutron scattering at zero temperature can be written as

Sµµ(q, ω) = 2π
∑

λ

| < 0|Sµ
q |λ > |2δ(h̄ω − (ελ − ε0)) (8)
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Recent mathematical breakthroughs have enabled analytical calculation of this
important quantity for the dominant two spinon excitations in zero magnetic
field[8].

Because an (un)occupied spinon state represents a spin up (down) the mag-
netized spin-1/2 chain maps to a spinon band away from half filling as shown
in Fig. 2(c). Fig. 2(d) shows the corresponding kinematical limits for low energy
excitations, which are significantly more complicated than for the unmagne-
tized state. The principal feature of interest, are the low energy incommensurate
modes of excitation with wave-vectors that are related to the magnetization as
follows

qi = nπ ± 2π < Sz > (9)

The field induced incommensurate modes have an alternate phenomenological
interpretation. As the incommensurate modes are gapless, they represent a spin
density modulation that persists on an arbitrarily long time scale. The magnitude
of the incommensurate wave-vector further indicates that the magnetization is
carried by magnetized defects in quanta of spin-1/2 and with density ρ = 2 <
Sz >. The band versus ”defect lattice” description of the magnetized spin-1/2
chain can be compared to the band versus striped model for the incommensurate
spin correlations in the copper oxide two-dimensional lattice of high temperature
superconductors[15,16].

Chemical Common J TN gµBH/J σinc Refs.
Formula Name (meV) (K) barn

SrCuO2 280(20) <1.5 0.007 0.61 [17–19]
Sr2CuO3 260(10) 5 0.006 0.67 [18,20–23]
Ca2CuO3 ≈86 8 0.013 0.65 [24,25]
BaCu2Ge2O7 46.5 8.5 0.024 0.808 [26,27]
BaCu2Si2O7 24.1 9.2 0.048 0.632 [26,28–30]
KCuF3 17.5 39 0.067 0.82 [31–35]
CuGeO3 10.4 TSP = 14 - 0.73 [36–38]
CuCl2 · 2N(C5H5) CPC 2.31 1.14 0.50 110.9 [39,40]
Cu(C6H5COO)2 · 3(H2O) Cu-Benzoate 1.57 0.8 0.73 158.5 [41,42]
[(CH3)2SO2]CuCl2 CDC 1.43 0.91 0.81 70.4 [43,44]
Cu(C4H4N2)(NO3)2 CuPzN 0.90(1) <0.05 1.29 42.0 [45]
CsCuCl4 0.34(2) 0.62 3.40 22.0 [46]
CuSO4 · 5(H2O) 0.25 0.100 4.63 99.3 [47,48]
CuSeO4 · 5(H2O) 0.15 0.125 7.72 99.6 [47,48]

Table 1. Key characteristics of S=1/2 linear chain Heisenberg antiferromagnets or-
dered according to the magnitude of the exchange constants. TN refers to the tem-
perature below which long range magnetic order develops. TSP indicates the critical
temperature for a spin-Peierls transition. gµBH/J is calculated with g = 2 and H = 10
Tesla. The incoherent cross section, σinc, is in units of 10−24cm2 per spin-1/2. Further
tabulations of S=1/2 HAFM chains can be found in references [49] and [50].
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Fig. 3. Image of the dynamic spin correlation function for the spin-1/2 chain cop-
per benzoate in the non-magnetized state. The ellipsoid shows the half width at half
maximum instrumental resolution. Reproduced from Ref.[42]

2.2 Experimental Model Systems

To examine spin correlations in the one-dimensional spin-1/2 chain through
experiments requires suitable model systems that faithfully realize the spin-
hamiltonian in Eq. 4. Table 1 lists some of the materials that have served
as model experimental systems. It is important that the ordering tempera-
ture is small compared to the exchange constant as that indicates a highly
one-dimensional materials where inter-chain interactions can be neglected for
h̄ω > kBTN . The absolute value of the exchange constant determines the ex-
perimental conditions that are necessary to access a certain range of normalized
temperature kBT/J , normalized field gµBH/J , and normalized energy trans-
fer, h̄ω/J . For the present work, we are interested in large values of normalized
magnetic field in the ≈ 10 T superconducting magnets that are available for
neutron scattering experiments. At the same time, we want to resolve the mag-
netic excitation spectrum using a cold neutron triple axis spectrometer with
energy resolution of order 0.1 meV. This implies an exchange constant, J ≈ 1
meV. To optimize the signal to noise ratio it is desirable to minimize the nu-
clear incoherent scattering cross section per magnetic ion, a quantity also listed
in the table. The two model systems that we shall focus on in this article
are copper benzoate (Cu(C6H5COO)2 · 3(H2O)) and copper pyrazine dinitrate
(Cu(C4H4N2)(NO3)2). Both are highly one-dimensional and have exchange con-
stants small enough to enable large values of the reduced magnetic field. One
difference that will turn out to be important for the high field experiments is
that copper benzoate has two magnetic atoms per one-dimensional unit cell,
while copper pyrazine dinitrate has only one.
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2.3 Zero Field Properties

The zero field dynamic spin correlation function for the spin-1/2 chain was mea-
sured using cold neutron scattering from copper benzoate and is shown in Fig. 3.
Similar data are also available for KCuF3[51] and copper pyrazine dinitrate[52].
While most of the intensity is accumulated along the lower boundary of the two
spinon continuum (Eq. 6), the distribution is significantly wider than can be
accounted for by the instrumental resolution function (solid ellipse). The data is
instead consistent with a bounded two spinon continuum.
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Fig. 4. Constant wave-vector cuts through the zero field neutron scattering data for
copper benzoate shown in Fig. 3. The solid lines show the resolution convoluted exact
two spinon contribution to the dynamic structure factor. The dashed line shows the
resolution convoluted Müller approximation. Just two parameters were extracted from
the combined data set. An overall pre-factor and the exchange constant J = 1.57(1)
meV. Adapted from Ref.[42]

Comparison to theories of the detailed energy dependence of the dynamic spin
correlation function is best accomplished by comparing cuts through the data
to resolution convoluted intensity distributions as shown in Fig. 4. The dashed
lines show a phenomenological approximation that provides a good fit to the
data[14,53]. The exact two spinon contribution to the dynamic spin correlation
function shown with the solid line is difficult to distinguish from the approximate
model[54]. The distinction lies in the higher energy part of the spectrum where
the exact two spinon contribution to S(q, ω) falls off more smoothly than the
phenomenological form.
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2.4 Spin correlations in the Magnetized State
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Fig. 5. Constant energy scans for h̄ω = 0.21 meV at various values of applied magnetic
field at T = 0.3 K for copper benzoate. The data show the development of incom-
mensurate soft modes in the magnetized spin-1/2 chain. Solid lines show a resolution
convoluted model calculation as described in Ref.[41].

We now turn to the experimental evidence for incommensurate spin correla-
tions in the magnetized state of the spin-1/2 chain. Fig. 5 shows constant energy
scans at low energies (h̄ω/J = 0.13) and for values of the applied field ranging
from 0 to gµBH/J = 0.51. At zero field the data provide clear evidence for a
two spinon continuum since long lived spin wave excitations would give rise to
two resolution limited peaks rather than a single flat top maximum.

At finite field two small peaks split off symmetrically about q = π and move
progressively further from this location with increasing applied field. From these
data, we derived the field dependence of the soft mode wave-vector that is plot-
ted in Fig. 6. The solid line in the figure is based on Eq. 9 and a calculation
of the field dependent magnetization of the spin-1/2 chain. Clearly, the wave-
vector dependence of the quasi-one-dimensional soft modes in copper benzoate
is consistent with the spinon theory for the uniform spin-1/2 chain. However,
while the theory predicts a gapless spectrum Fig. 6(b) shows that there is a
field-induced gap for copper benzoate.
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the excitation spectrum of same material from a combination of neutron scattering and
specific heat data. Reproduced from Ref. [41].

Exchange anisotropy that defines an easy plane parallel to the field direction
could in principle account for the gap as application of a magnetic field creates
an easy axis perpendicular to the field. However, the magnitude of exchange
anisotropy in copper benzoate can be estimated from the g-tensor anisotropy to
be of order 1%, which is insufficient to account for the magnitude of the field
induced gap[55]. Instead, it appears that staggering of the g-tensor along the
spin chain as well as an alternating Dzyaloshinski-Moriya interaction causes the
field-induced gap[56,57]. While neither of these terms have significant impact on
zero field properties, they lead to unit cell doubling in a field and transverse
long-range antiferromagnetic order. Because low energy excitations in the spin-
1/2 chain correspond to a sliding spin density wave, the formerly gapless two-
spinon continuum acquires a gap when odd and even sites of the spin chain
become distinguishable in a field. In field theoretical language, a staggered field
is a relevant perturbation for the spinon Luttinger liquid. It can readily be
shown using bosonization techniques that a staggered field induces a gap in
the excitation spectrum that grows in proportion to Hα

s , where α = 2/3 in the
limit of a small staggered field, Hs and a small uniform field[56]. As the staggered
g-tensor induces a transverse staggered field in proportion to the uniform field
the result is a spin gap that grows in proportion to the applied field to this
same power α ≈ 2/3. The solid line in Fig. 6(b) is a power-law fit that yields
αexp = 0.65(3), a value that is in excellent agreement with the theory.

It has been shown that the effective low energy theory for a spin-1/2 chain
with a staggered field is the Sine-Gordon model[56–58]. Originating as a mathe-
matical model in particle physics, this model has been used to analyze condensed



12 C. Broholm et al.

matter systems ranging from one-dimensional Josephson Junctions to quasi-one-
dimensional easy-plane ferromagnets. However, the spin-1/2 chain with a stag-
gered field may prove to be the best system yet in which to explore the rich
excitation spectrum of this model through experiments[57].

It is interesting to note that despite the transition from a gapless spinon
Luttinger liquid to a gapfull Sine-Gordon model, the field dependent incommen-
surability is perfectly accounted for by Eq. 9. This indicates that the appearance
of incommensurate soft modes in magnetized quantum spins is a general phe-
nomenon that should find a general explanation. One possibility is that magne-
tization is carried by repulsive defects in the zero field singlet ground state much
as flux is carried by flux lines in the mixed phase of type II superconductors[3].

The existence of such repulsive defects (alias solitons) is well demonstrated in
the spin-1/2 Heisenberg chain in presence of sizable spin-lattice couplings. In that
case, the 3D lattice undergoes a structural instability induced by the magnetic
fluctuations below a well-defined temperature TSP , the so-called spin-Peierls
transition temperature. Consequently, the chains dimerize, giving rise to a non-
magnetic singlet ground state and an energy gap ∆SP ≈ 1.74kBTSP opens in the
excitation spectrum at q = π [59]. Under field, the spin-Peierls system undergoes
a transition to an incommensurate magnetic phase at a critical field HC directly
related to ∆SP [60,61]. In the high-field phase, a soliton lattice forms, with
both structural and magnetic components characterized by an incommensurate
(IC) wave-vector shifted from q = π by a quantity δkSP ∝< Sz >. Neutron
diffraction measurements on CuGeO3 have provided direct evidence for a long-
ranged dual (magnetic and structural) soliton structure above HC ≈ 12.5 T
[62]. Figure 7 shows the field dependences of δkSP and the soliton width Γ ,
compared to the field-theory prediction [60] and to x-ray data [63]. Contrary to
the pure Heisenberg chain, incommensurate excitations exist only above HC for
the spin-Peierls system [64].

3 Uniform Antiferromagnetic Spin-1 Chain

Haldane discovered that integer spin chains are qualitatively different from half
odd integer spin chains[2,65,66]. His approach was a large S mapping of the
spin Hamiltonian to the O(3) non-linear sigma model with a topological term
associated with the Berry phase of the spin. For integer spins the topological
term vanishes, while for half odd integer spins the topological term is important.
When there is no topological term the non linear sigma model maps to a classical
two-dimensional ferromagnet at finite temperature. This model has short-range
order, which implies short-range order for the integer spin chain as well. For
the half odd integer spin chain however, the topological term leads to a variant
of the sigma model with instanton quark confinement and a gapless excitation
spectrum consistent with the results described above[65].

Given the fact that the sigma model mapping relies on S → ∞ one might
question the applicability of results derived from it for spin chains with S ≤ 1.
While there are certainly quantitative differences, there are arguments against
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qualitative changes in the behavior of integer spin chains as S becomes smaller
such that the main conclusions derived from the S →∞ mapping should persist
in the small S limit. In addition, there are various other theoretical and numerical
results that support a gap for integer spin chains. One is the Lieb Schultz Mattis
theorem, which states that a gap can only be present in a quantum spin chain
if the spin quantum number per unit cell is integral[67–69]. There is also much
numerical work, which provides compelling evidence for spin gaps in integer spin
chains[70,71].

A simple explanation for a spin gap in the spin-1 chain was provided by
Affleck, Kennedy, Lieb, and Tasaki[72]. They identified a valence bond solid state
in which each of the spin-1/2 degrees of freedom that in pairs make up atomic
spin-1 are contracted with neighboring spin-1/2 degrees of freedom to form a
singlet. Such valence bond solid states are possible when twice the spin quantum
number matches the nearest neighbor coordination number. The valence bond
solid for a spin-1 chain is the exact ground state of a projection spin hamiltonian
of the following form

H′V BS =
∑

n

P2(Sn,Sn+1), (10)

The projection operator, P2, is unity when the argument spin operators combined
form a spin-2 degree of freedom and zero otherwise. Clearly the ground state for
H′V BS has no near neighbor spin pairs in a spin 2 state and this exactly defines
the valence bond solid state. Projection operators can in general be expanded
as a power series of order 2S in spin dot products[73]. In particular, for spin-1
the spin-2 pair projection operator takes the form

P2(Si,Sj) =
1
2
Si · Sj +

1
6
(Si · Sj)2 +

1
3

(11)
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Thus the hamiltonian that has the valence bond solid ground state can be written
in terms of spin-1 operators as follows :

HV BS =
∑

n

[
Sn · Sn+1 − β(Sn · Sn+1)2

]
, (12)

where β = −1/3 and trivial terms and factors have been removed for simplicity.
Studies of this hamiltonian as a function of β indicate that there are no phase
transitions at T = 0 as β is driven to zero. The implication is that the valence
bond solid is a good initial ansatz for describing the conventional Heisenberg
spin-1 chain itself. Of course these arguments only hold for the spin-1 case.
In particular, for spin-1/2 the condition that 2S equals the number of nearest
neighbors is not fulfilled so that a valence bond solid state is not possible in that
case.

The valence bond solid state for an even length chain with β = −1/3 can be
written as follows[74]

|ΨV BS >=
√

2|000... > +
∑

m=2,4,6,...

2(m−1)/2
∑
perm

|0 + 0− 0 + 0− 00 + 00− ... >

(13)
where m counts the number of sites with projection quantum numbers different
from 0 and the superposition is over all states where removal of sites with no spin
projection along the quantization axis leaves behind a perfectly ordered m-site
Néel state. A similar exact ground state wave function can be written for odd
length chains. The valence bond solid is accordingly said to have perfect string
order. String order is gauged by the expectation value of the following non-local
operator

Ojk = Sz
j exp(iπ

k−1∑

n=j

Sz
n)Sz

k (14)

HV BS has perfect long range string order: lim|j−k|→∞ < Ojk >V BS= 4
9 . It has

been shown that there is also long range string order in the spin-1 chain with
β = 0 though the value of the order parameter is reduced to approximately
0.37[75].

Excited states of the spin-1 chain correspond to breaking a valence bond in
the valence bond solid state[76]. Broken valence bonds can propagate coherently
through the string ordered phase where they only scatter from other string order
defects. Creation of a broken valence bond at rest requires an energy of ∆ =
0.41050(2)J for the bi-linear spin-1 chain (β = 0)[71].

Owing to the isolated singlet ground state of the spin-1 chain and the gap
in the excitation spectrum, there is also a minimum critical field Hc = ∆/gµB

required to magnetize the system. Above the critical field there is a gapless
critical phase[77] that could have similarities to the magnetized state of the
spin-1/2 chain[3]. One of the goals of the present research has been to explore
the possibility of incommensurate spin correlation in this magnetized phase of
the spin-1 chain.
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3.1 Experimental Model Systems

Table 2 contains key characteristics of experimental model systems for the Hal-
dane spin-1 chain. As opposed to the spin-1/2 chain, a spin-1 degree of freedom
is affected by single ion anisotropy. This turns out to be a greater obstacle to
finding good model system than interchain coupling. While single ion anisotropy
splits the triplet excited state, inter-chain coupling must exceed a threshold of
order the Haldane gap energy to have a significant impact on the properties of
a spin-1 chain. Here we shall focus on NENP and NDMAP for which high field
experiments have been performed. We shall see that the materials have very
different behavior in a field owing to g-factor alternation, which is present in the
case of NENP but absent for NDMAP.

Chemical Common J |J ′/J | D/J TN gµBH/J Reference
Formula Name meV 10−3 10−3 K

AgVP2S6 58(4) 0.01 5.8 < 2 0.020 [78]
Y2BaNiO5 21 < 0.5 -39 < 0.05 0.055 [79–81]
Ni(C3H10N2)2N3(ClO4) NINAZ 10.7 < 0.7 170 < 0.06 0.11 [82–84]
Ni(C3H10N2)2NO2(ClO4) NINO 4.5 250 < 1.2 0.21 [85,86]
Ni(C2H8N2)2NO2(ClO4) NENP 4.1(3) 0.8 180 < 0.0003 0.28 [87–89]
Ni(C5D14N2)2N3(PF6) NDMAP 2.85 0.6 250 < 0.25 0.41 [90–94]
CsNiCl3 2.275 17 -1.9 4.9 0.45 [103,95,96]

Table 2. Key characteristics of quasi-one-dimensional S = 1 Haldane antiferromag-
nets. gµBH/J is calculated with g = 2 and H = 10 Tesla.

3.2 Zero Field Properties

A comprehensive map of the zero field excitation spectrum for the Haldane spin-1
chain has been obtained through neutron scattering experiments on NENP[87,88,100].
Figure 8(a) shows the zero field dispersion relation for long lived magnetic ex-
citations. The absence of reflection symmetry about the q = π/2 line indi-
cates that translation symmetry remains identical to the paramagnetic phase
for T << J/kB despite antiferromagnetic interactions. Figure 8(b) shows the
wave-vector dependence of the energy integrated intensity, which is a measure
of the equal time spin correlation function. For a spin system with long lived
excitations, the dispersion relation and equal time spin correlation function are
related through an exact sum-rule[101]. Specifically it can be shown that,

Sαα(q) = h̄

∫ ∞

−∞
Sαα(q, ω)dω (15)

' h̄

ωαα(q)

∫ ∞

−∞
ωSαα(q, ω)dω (16)

' −2
3

< H > /L

h̄ωαα(q)
(1− cos q) (17)



16 C. Broholm et al.

Fig. 8. (a) Circles, triangles, squares, and solid lines: dispersion relation ω(q) for long-
lived modes in NENP. Dot-dashed line: Lower edge of corresponding two-magnon con-
tinuum. Crosses: QMC results [97] scaled by J = 4.1 meV. (b) Instantaneous spin corre-
lation function S⊥,‖(q). Crosses: Monte Carlo results [98,99]. Dashed lines: square-root
Lorentzians with ξ = 8.5 and 4.2. Solid lines: single mode approximation based on ω(q).
In both (a) and (b), open and filled symbols for q > 0.9π correspond to polarizations
perpendicular and parallel to the chain.

where < H > /L is the ground state energy per spin. The solid line in Fig. 8(b)
shows that this so called single mode approximation[102] provides an excellent
account of neutron scattering data through most of the zone. Subsequent higher
resolution data for CsNiCl3 show spin wave damping setting in for q < π/2[103].

Figure 9 shows an energy scan at q = π for NDMAP in zero magnetic field.
The data illustrate the effects of strong easy plane anisotropy in this material.
The upper mode corresponds to spin fluctuations polarized along the spin chain,
while the lower peak consists of two near degenerate excitations that are polar-
ized in the perpendicular plane. These three modes would be degenerate for an
isotropic system but for NDMAP they are split by single ion and/or exchange
anisotropy. The solid lines in the figure were calculated based on the SMA and
the known resolution of the neutron scattering spectrometer.
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Fig. 9. Constant q = π scan in NDMAP at zero field and T=0.3 K. The data was
collected with a horizontally focusing analyzer so the spin chain was oriented along
the scattered beam direction throughout the scan. x, y, and z refer to the a, b, and c
directions respectively of the orthorhombic structure. The solid lines were calculated
based on the SMA and known resolution effects. Reproduced from Ref. [92]

3.3 Spin correlations in the Magnetized State

Figure 10 shows the field dependence of excitations at q ≈ π in NENP for fields
applied along the c axis[104]. There are two Ni atoms per unit cell along the
spin chains in this material so just like in copper benzoate, application of a
uniform external field implies that the spin system effectively is also subject to
a staggered field. The staggered field immediately induces transverse long range
antiferromagnetic order as was clearly observed through neutron diffraction[17]
and ESR[105]. In addition, a staggered field is a relevant perturbation on the
high field gapless phase of the ideal Haldane spin chain. It is apparent from
Figure 10, that NENP does not have a finite field phase transition from a gap-
full to a gap-less phase. Rather there is induced Néel order at any finite field
and a cross over from a low field phase with a Haldane gap to a high field phase
with a gap induced by the staggered field.
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Fig. 10. Field dependence of the energies of easy a − c plane excitation at q ≈ π in
NENP for fields applied along the c direction at T = 0.3 K. In zero field the upper mode
shown with open circles is polarized along the a-direction. Reproduced from Ref. [104].
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Fig. 11. Field and temperature dependence of elastic magnetic scattering in NDMAP
close to the critical field. Field and wave-vectors are indicated on the figure. Only for
fields with a component along the hard c axis do we find three-dimensional long-range
order. The open circles recorded for fields in the easy plane measure the intensity of
Bragg rods that correspond to quasi-two-dimensional magnetic order. Reproduced from
Ref. [91]
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As a model system for studying the magnetized Haldane spin chain, NDMAP
has the advantage that there is only one Ni-site per unit cell along the spin chain.
Consequently it is possible to apply a pure uniform magnetic field. Figure 11
shows that NDMAP has a bona-fide critical phase transition at a finite field.
As a consequence of inter-chain interactions, the ordered phase persists to finite
temperatures. A critical field induced phase transition has also been found in
the spin-1 chain NDMAZ[106]. Interestingly, the nature of the ordered phase
in NDMAP appears to be strongly dependent on the direction of the applied
magnetic field. For fields applied strictly in the easy plane, the elastic magnetic
scattering in the high field phase takes the form of rods in reciprocal space
rather than resolution limited Bragg peaks. This indicates quasi-two-dimensional
magnetic order. However, when the field has a component along the hard chain
axis, there are resolution limited Bragg peaks indicating long range magnetic
order. The high field phase diagram also is highly anisotropic and indicates
qualitatively different cooperative properties for fields parallel and perpendicular
to the chain axis[107,108].

Fig. 12. Inelastic magnetic neutron scattering measured in NDMAP at T = 2.5 K
for different values of magnetic field applied along the b axis. The extra intensity seen
below q ≈ 0.4c∗ at low energies in (c) may be an artifact of imperfect background
subtraction. From Zheludev et at.[109]
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Fig. 12 shows the excitation spectrum close to q = π at three fields bracketing
the critical field. The energy range accessed includes only the easy plane modes
and the field was applied in the easy plane. As expected the mode perpendic-
ular to the field direction in the easy plane is driven down in energy, while the
mode corresponding to fluctuations along the field direction stays constant up
to the critical field. This behavior is consistent with perturbation theory based
on the Wigner-Eckert theorem[110,111]. Above the critical field, the energy of
the ||H mode is driven up as the system is magnetized, while the lower mode
remains quasi-elastic. On general grounds it is to be expected that at T = 0
there should be a gap in the excitation spectrum above the critical field be-
cause the applied field in conjunction with the easy plane anisotropy leaves no
continuous degree of freedom for the spin variables[77]. In order to remain in a
disordered phase, the inelastic neutron scattering experiment was carried out at
finite temperatures. Consequently the quasi-elastic scattering may correspond
to scattering from thermally excited solitons as has previously been seen in high
field experiments for classical easy plane antiferromagnets[112].

Low energy constant energy scans through q = π show broadening beyond
resolution in the high field phase. The characteristic Half Width at Half Maxi-
mum, κ, could either be associated with the thermal soliton density or it could
be a measure of the deviation from half filling of a high field spinon Luttinger
liquid. Further experiments will be required to distinguish between these two
scenarios.

4 Conclusions

Zero field properties of integer and half odd integer spin chains are now well
understood both from a theoretical and experimental standpoint. The spin-1/2
chain has gapless two-spinon continuum, while the spin-1 chain has a bound
state that is separated from the singlet ground state by the Haldane gap. The
magnetized state of the spin-1/2 chain has a new characteristic length scale that
can be associated with the Fermi wave-vector of a one-dimensional Luttinger
liquid shifted from half filling, or with the spacing between magnetized soliton
defects. When there is a staggered g-tensor the magnetized state is in general
gapfull and has transverse long range antiferromagnetic order. The spin-1 chain
has a finite critical field that corresponds to closing the Haldane gap. However,
when there is an alternating g-tensor, the gap actually never closes. Instead
there is a cross-over from a low field phase with a Haldane gap to a high field
phase with a residual gap induced by the staggered field. In addition transverse
antiferromagnetic order is induced even for infinitesimal applied field. When
there is no staggered field the high field phase should be gapless. Unfortunately
most highly one-dimensional systems also have substantial spin space anisotropy.
In our experiments on NDMAP the field was applied in the easy plane and so
it may induce a gap in the T = 0 excitation spectrum. Instead we found quasi-
elastic scattering at high fields and at temperatures above the phase transition
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to static order. This quasi-elastic scattering may be associated with scattering
from a thermally excited soliton gas.

An exciting experimental challenge that remains is to determine whether
field induced incommensurate spin correlations occur in systems other than the
spin-1/2 antiferromagnetic Heisenberg spin chain. The high field phase of the
spin-1 chain would be an obvious place to look. Unfortunately the experiments
are difficult because a gapless high field phase is only expected to exist in the
high field limit when the field is applied perpendicular to an easy plane and
when there is no staggered g-tensor. While NDMAP has no staggered g-tensor
the proposed experiment is complicated by the fact that the magnetic field must
be directed along the chain while at the same time wave-vector transfer must
have a significant component along that direction. This geometry is incompatible
with the conventional superconducting split coil magnet configuration where the
field is perpendicular to the scattering plane. It appears that advances in high
field magnet systems for neutron scattering or new model spin-1 chain systems
will be needed for progress in this area.
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