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1 Introduction

One of the issues we face when performing triple-axis measurements with fixed final energy involves
the nature of Bragg’s Law. In satisfying the scattering conditions for neutrons of wavelength λ, we
also satisfy the condition for λ/n assuming that reflections with n-times the d-spacing are allowed.
Consequently, the beam passing through the incident beam monitor is contaminated by higher
order reflections. We typically perform the measurements by counting to a fixed number of monitor
counts but this isn’t accurate because the amount of higher order contamination is a function of
incident energy. In this document, I will try to calculate the fraction of the monitor counts that
are due purely to neutrons with wavelength λ. The monitor count should be normalized by this
fraction to give a meaningful comparison of intensities at different energy transfers.

The expression for this fraction can easily be written down as:

Frac =
Spec(λ)R(λ)T (λ)Eff(λ)∑
n Spec(λ

n)R(λ
n)T (λ

n)Eff(λ
n)

(1)

where Spec is the reactor spectrum, R is the monochromator reflectivity, T is the transmission of
the upstream Sapphire filter and Eff is the efficiency of the monitor. To accurately calculate the
correct fraction, we need valid expressions for each of the terms in the above Equation.

First, we consider the reactor spectrum which is largely defined by a Maxwellian which has a
characteristic temperature of about 310K for HFIR. This has the following equivalent forms,

I(E)dE ∝ E exp
[
− E

kBT

]
dE

I(v)dv ∝ v3 exp
[
− E

kBT

]
dv

I(λ)dλ ∝ 1
λ5

exp
[
− E

kBT

]
dλ. (2)

The Maxwellian quite accurately describes the reactor spectrum for smaller energies but the effi-
ciency of the moderation results in an epithermal tail. Sears [1] claims that a reasonable approxi-
mation to the reactor spectrum is to assume the Maxwellian for energies up to 5kBT above which
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Figure 1: Reactor spectrum including model for epithermal tail as a function of wavelength.

the epithermal tail can be modelled by I(λ) = constant/λ. The resulting plot of I(λ) is shown
in Figure 1. The cross-over from the Maxwellian to the epithermal tail occurs at λ=λ0/

√
5 where

λ0 = h/(2mkBT )−1/2 and the maximum of the Maxwellian is at λ = (2/5)1/2λ0.

If we write the reactor spectrum as, f(λ)dλ, the appropriate term for higher order wavelengths will
be,

f(
λ

n
)d

λ

n
=

1
n

f(
λ

n
)dλ. (3)

We must remember to include this factor of 1/n. As a point of interest, if we perform this calculation
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Figure 2: Measured transmission of the Sapphire filter used on HB3 as a function of incident energy.

for the pure Maxwellian, as a function of E, v, and λ, we get

I(n2E)dn2E ∝ n4E exp
[
− E

kBT

]
dE

I(nv)dnv ∝ n4v3 exp
[
− E

kBT

]
dv

I(
λ

n
)d

λ

n
∝ n4

λ5
exp

[
− E

kBT

]
dλ. (4)

As a consistency check, we arrive at the same n4 term for all forms of the Maxwellian indicating a
calculation which is independent of how the Maxwellian is formulated.

Single crystal Sapphire has proven to be very useful in thermal neutron scattering experiments as
it provides good transmission at small neutron energies and much worse transmission at higher
energies. Consequently, it has the net result of greatly suppressing the epithermal tail of the reactor
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Figure 3: The calculated spectrum shown in Figure 1 multiplied by the Sapphire transmission shown
in Figure 2.

ultimately making the spectrum much more Maxwelllian. The transmission of the actual Sapphire
filter in place at HB3 was measured at ORELA and the resulting transmission as a funtion of energy
(on a logarithmic scale) is shown in Figure 2. To explicitly show the importance of this filter, the
transmission shown in Figure 2 has been multiplied by the calculated reactor spectrum (Figure 1)
and the resulting curve is plotted in Figure 3. The thermal spectrum is only slightly suppressed by
the filter but the epithermal tail of the reactor is greatly reduced.

The calculated reactor spectrum and the measured Sapphire transmission provide three of the four
terms needed to calculate the contamination we are interested in. One of the remaining terms is the
monitor efficiency which can simply be assumed to be 1/v. This leaves the final required term, the
monochromator reflectivity. This issue is addressed in Sears [1]. For most monochromator crystals,
materials are chosen with very small absorption and, consequently, we will ignore the absorption
cross-section in this calculation. Sears [1] calculates the reflectivity within the framework of neutron
transport theory resulting in reflectivity for the case of a symmetrical reflection (where the incident
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Monochromator PG Be Si
Miller Indices (002) (002) (111)

Structure Hexagonal Hexagonal Diamond
Lattice Constants a=2.4612 Å c=6.7079 Å a=2.2854 Å c=3.5807 Å a=5.4309 Å
Unit Cell Volume

√
3

2 a2c=35.1893 Å3
√

3
2 a2c=16.1966 Å3 a3=160.1826 Å3

Scattering Length 6.6460 fm 7.790 fm 4.1419 fm
d-spacing 3.354 Å 1.7904 Å 3.1355 Å

Table 1: Crystal parameters for monochromators used at HB3.

and final angles with respect to the crystal face are the same), R, as,

R =
Rk

1 + Rk
(5)

where Rk is the kinematical reflectivity. Within the Gaussian approximation, we can write Rk as,

Rk =
1√
2πη

Qt exp

[
−1

2

(
θ − θB

η

)2
]

(6)

where η is an effective mosaic spread, θB is the angle satisfying Bragg’s Law for the reflection of
interest, t is the thickness the beam sees in the sample (for a symmetric Bragg reflection, this can
be written as d/ sin θB where d is the actual thickness of the monochromator). In addition, the
crystallographic quantity Q is defined to be,

Q =
λ3|FB|2

V 2
0 sin 2θB

(7)

where V0 is the volume of a unit cell and FB is the structure factor for the reflection of interest.

Inserting the expression for Rk (Eq. 6) into the expression for the reflectivity (Eq. 5) results in a
maximum reflectivity (occurring at θ = θB) of,

Rmax =
1√
2πη

Qt

1 + 1√
2πη

Qt
(8)

with a full-width at half-maximum of,

∆θ = η

[
8 ln

(
2 +

1√
2πη

Qt

)]
(9)

The integrated reflectivity, ρ, is defined to be the integral of R over θ and will be proportional to
Rmax∆θ,

ρ ∝ Rmax∆θ. (10)

To calculate the integrated reflectivity, we actually need the detailed crystallographic information
for each monochromator crystal of interest. Table 1 shows the relevant crystal parameters for each
of the monochromator crystals used at HB3 (PG, Silicon, and Beryllium). The structure factor,
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Figure 4: The calculated fraction of monitor counts resulting from Ei for the 3 monochromators
used at HB3. For reference, we’ve included an old plot from HB2 for the PG (002) monochromator
used there.

|F |2 for PG along the (00l) direction is zero for l odd and 16b2 for those with l even. Note there is a
caveat to this - two of the unit cell positions for graphite have a positional parameter z which must
be between 0 and 0.05. If set to 0, we get 16b2 for all reflections but a non-zero value of z results in
a modulation of the structure factor with a periodicity of 1/z in l. This causes the structure factor
to go to zero at points where l=1/2z. For instance, if z has its maximum value of 0.05, the reflection
(0,0,10) will have a vanishing structure factor. For the results presented here, we will assume z=0.
The simplest structure factor is that of Be for (00l) reflections and is equal to 4b2 for l even and 0
for l odd. Silicon has the most complicated structure factor. Reflections along the (hhh) direction
with h odd are always present and have an intensity of 32b2. Those with h even are present when
3h=4n where n is an integer and absent when this condition isn’t met. The h-even reflections which
are present are the most intense reflections with a structure factor of 64b2.

We can now calculate the fraction of monitor counts using the expression shown in Equation 1
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as a function of Ei and the resulting plot is shown in Figure 4. On this plot, we’ve included the
resulting calculations for PG (002), Si (111), and Be (002). All calculations have been performed
numerically using the first 100 orders of reflection. In addition, an old plot from HB2 showing a
calculation used there for the PG (002) monochromator. This can be seen to agree very well with
the calculation presented here. It differs slightly in both the low energy and high energy regimes.
At low energies, a very sharp turn-on is observed and this corresponds to wavelengths longer than
2d beyond which Bragg’s Law cannot be satisfied for first order reflections resulting in a fraction
identically equal to zero. Of course, this turn on is at a very different energy for Be due to the much
smaller d-spacing. As all λ/n reflections exist for PG (002) and Be (002), we get very similar curves
for these two monochromators. However, Si (111) has several systematically absent peaks (most
importantly the λ/2 (2,2,2) reflection) resulting in a monitor rate which is almost purely due to Ei

for energies as low as about 15 meV. Both PG (002) and Be (002) are seen to saturate at a value
of about 0.96. This may be due to an overestimate of the fraction of the reactor spectrum included
in the epithermal tail. A more reliable functional form for this portion of the spectrum could help
here. Such a functional form is difficult to arrive at in the general case as it depends strongly on
the detailed moderator configuration in the reactor. For instance, a heavy water moderated reactor
with a much larger moderator is much more efficient at moderating the neutrons resulting in a much
weaker epithermal tail.

With the code in place to calculate the energy dependent reflectivity for all three monochromator
crystals, it is informative to calculate the ratio of the expected neutron intensity from Be and Si to
that of PG. According to Sears [1] the expression for the neutron count rate is given by

Iscattered = ρλ cot θBI(λ) (11)

where I(λ) is the reactor spectrum as defined above. The ratio can be written as

RatioBe,Si =
ρBe,Si cot θBe,Si

ρPG cot θPG
. (12)

The resulting plot is shown in Figure 5. We can see in both cases that the intensity is much smaller
than that of PG. For the case of Si, this is due to a much smaller reflectivity (as the d-spacings are
very similar between Si and PG). To get better reflectivities from Si, much thicker crystals should
have been used but this results in much larger gaps between crystals for the case of a variable focus
monochromator. Be, on the other hand, has an integrated reflectivity very similar to that of PG
and the smaller intensity is almost entirely due to cot θ which is very different due to the different
d-spacings. However, for Be, the energy resolution is much improved (due to the same small cot θ
value) resulting in the traditional tradeoff between intensity and resolution.
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Figure 5: Ratio of the intensity for Be and Si to that of PG. The values for incident energies of 14.7
meV and 30.5 meV are shown on the plot graphically and labelled on the y-axis to the right
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