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where ¢; is the relative abundance of the £th isotope, I its nuclear
spin, and h; and b, its scattering lengths. The quantity b is known as
the coherent scattering length of the element or nuclide. It is con-
ventional to quote the values of b and b7 in terms of the two quantities
Teon and o, defined in (2.70). A list of the values of oo, and o, for
the elements, together with a description of the methods of measuring
these quantities, has been given by Koester (1977). A few of the values
are given in Table 2.1.

Table 2.1 Values of o, and oipne

Element

or

nuclide s Teahi  Tine Element Z Tich  Tise
'H 1 1.8 802 Y 23 0.02 5.0
’H 1 56 2.0 Fe 26 115 04
(i 6 3.6 0.0 Co 27 1.0 5.2
O 8 4.2 0.0 Ni 28 13.4 5.0
Mg 12 36 0.1 Cu 29 75 0.5
Al 13 1.5 0.0 Zn 30 4.1 0.1

The units of oy and oy are 107" m?, The values are taken from
Koester (1977).

The extension of the theory to scattering systems containing mors
than one element is readily made. If for example the scattering system
is a crystal of NaCl, the coherent scattering is that due to a hypothetical
crystal in which all the sodium nuclei have scattering lengths equal to &
for sodium, and all the chlorine nuclei have scattering lengths equal to
b for chlorine. The incoherent scattering is the sum of the incoherent
scattering from the sodium nuclei and the incoherent scattering from
the chlorine nuclei.

3

Nuclear scattering by crystals

3.1 Introduction

In the present chapter we evaluate the cross-sections when the scat-
tering system is a single crystal. We start by considering a Bravais
crystal, i.e. a crystal with one atom per unit cell. Denote the sides of

the unit cell by a,, a5, a; (see Fig. 3.1). Then a lattice vector is given
by

l=[]a1+f2a2+l'303, (31)
where [y, [5, I5 are integers. The volume of the unit cell is
Up=4a, .[alxa3}. (32)

We define the reciprocal lattice to be a lattice with unit-cell vectors
T1, T2, T3, where

2 2m
Tl“—*v—[azxﬂsl, m=—l[asxa,],
0

Vo 3.3)
27 e
T3 2_[01 X ﬂll.
Uo
The volume of the unit cell in the reciprocal lattice is
@m)’
T [TaX T3] =——. (3.4)
Vo

Fig. 3.1 Unit cell of crystal.




26 Nuclear scattering by crystals

From (3.3) a;. 7 =27b; (3.5)

Owing to thermal motion the nucleus / is displaced from its equili-
brium position . Its instantaneous position is

R =1+u, (3.6)

where u; is the displacement from the equilibrium position (Fig. 3.2).

The index j with which we previously labelled a nucleus now becomes
L

For a Bravais crystal the correlation between the positions of the
nuclei [ and I' depends only on I —I'. So in (2.68), for each value of [,
the sum over [ is the same. We may thus put I'=0. Similarly in (2.69)
each term in [ is the same and equal to the term [ = 0. Therefore

%(exp{ﬁix. R (0)} explirc. Ri(1)})
=N }{_" exp(irc . I){exp{—ir . ug(0)} explirc. w;(1)}), (3.7)
;(cxp{-ik, R;(0)} expliec. Ri(1)})

= N(exp{_ik. un((')} exp{ix. H()(s’)}). (38)

where N is the number of nuclei in the crystal. u (1) is the Heisenberg
operator for u. In these equations we have used the relation

Ri(t)=1+u(r), (3.9)
which follows from (3.6), since [ is a constant.

3.2 Normal modes

We assume that the interatomic forces in the crystal are harmonic, i.e.
that the forces are linear functions of the displacements. For such
forces the displacements u; can be expressed as the sum of displace-

Fig. 3.2 Position of nucleus /: @ equilibrium position, O actual (instan-
taneous) position.

Origin ™
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ments due to a set of normal modes. Thus
PN

alj (M) §7':T‘{a, exp(ig. [)+a! exp(~ig. 1)}, (3.10)

where q is the wavevector of the mode, and j is its polarisation index
(j=1,2,3). s stands for the double index g, w, is the angular
frequency of mode s, and e, is its polarisation vector. The sum over s
is over the N values of g in the 1st Brillouin zone, and over the three
values of j. M is the mass of an atom — assumed to be the same for all
the atoms. a, is the annihilation operator for the mode s, and a,, its
Hermitian conjugate, is the creation operator. These operators are
discussed in Appendix E. Normal modes are discussed in Appendix
G, where (3.10) is derived.

u;(t) is obtained from (3.10) by replacing a, and a. by their
Heisenberg operators, a,(t) and a; (¢). It is shown in Appendix E.1
that

a,(t)=-exp(iHt/h)a, exp(—iHt/h) = a, exp(—iwt), (3.11)
a, (n=exp(iHt/h)a, exp(—iHt/h)=a, exp(iw.). (3.12)

Thus

ho A\ _k.e,
n.u:(r)=(W—N) anf[a,exmi(q-l*w,r)}

+a; expl—i(q.l—w)}]. (3.13)

3.3 Probability function for a harmonic oscillator

The theory of the scattering of thermal neutrons by crystals is much
simplified by the use of a result, first derived by Bloch (1932), for the
probability function of a harmonic oscillator.

We first define the probability function for a single bound particle -
not necessarily a harmonic oscillator — moving in one dimension.
Denote the displacement or position variable by Q. Denote the
Hamiltonian by H, and its normalised eigenfunctions and eigenvalues
by ¢, and E,. Then

Hy, = E . (3.14)
If the particle is in an energy eigenstate n, the probability of finding
the displacement between Q and Q +dQ is | (Q)* dQ. Suppose the
particle is not in a single state n, but in an incoherent mixture of
states. If the particle is a member of an ensemble of similar particles
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at temperature T, the probability of its being in the state n is

i o P—
p,.:EeXp(—E,.B). Z=%exp(—5nﬁ). ‘B_kBT

(3.15)
We define the probability function f(Q) by

FQ)=Y paltr(Q)". (3.16)

f(Q)dQO is the probability of finding the displacement between Q
and Q +dQ. Since the ¢, are normalised, and ¥, p, =1, it follows
from (3.16) that

f‘ﬂomoa. (3.17)

a necessary result in view of the probability significance of f(Q).
We can express (A(Q)), the thermal average of a function A(Q), in
terms of f(Q). From (2.58)

<A(o)>:£p.,J A(Q)Un(Q) dQ

n

-

=[ A(Q)Y. palim(Q)F dQ

=j A(Q)/(Q) do. (3.18)

Bloch showed that, for a one-dimensional harmonic oscillator, the
probability function is a Gaussian, given by
f(Q)=C exp(—Q*/2a7), (3.19)

A coibikas) (3.20)

7
where o =
2Mw

M is the mass of the particle, and w the angular frequency. C is a
normalising constant obtained from (3.17). It follows from (3.18) and
(3.19) that the thermal averages of exp Q and Q7 are related by

(exp Q) =exp{3(Q%)}. (3.21)
The results (3.19) to (3.21) are derived in Appendix E.2.

3.4 Development of (exp U exp V)

We first evaluate the coherent cross-section. From (2.68) and (3.7)

a0

d’c Oeon k' N _ J .
=—————"% explix. ! (exp U exp V)
\an dE')mh A k Iahyopis.l]] (expllexp

xexp(—iwt) dt, (3.22)
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where
U=—ix.uy(0)=-i} ga,+g.a;, (3.23)
V=ik.u(t)=iY ha,+h*a!, (3.24)
h \12x e,
pmfetolf Kzl 3.25
& (ZMN) = v 3:235)
h Y2k e
h, = —) Yasobita. T—waill: 3.26
) (ZMN U;exp{n(q I —w,t)) ( )

Egs. (3.23) to (3.26) follow from (3.13).

We now develop the expression {exp U exp V). In addition to the
result that the probability function for a harmonic oscillator is a
Gaussian, we need the following results:

(i) The a and a " operators for different oscillators commute. For
the same oscillator, the commutation relation for @ and a* is given by
(E.8). The two results are combined in the equation

[as, as]=8,,. (3:Z7)

(i) If A and B are any two operators whose commutator is a

c-number (i.e. a number as opposed to an operator), then
exp A exp B =exp(A + B) exp{3(AB — BA)}. (3.28)
This result is proved in Appendix I.1.

We first prove that UV — VU is a c-number. From (3.23) and
(3.24)

Uv—-vuU =7y (g.a, tgas )Y (hyay+h%al )
_Ej (h"as'*'ht'a : ) }.—. (8.1'“1 +ﬂxa: ). (3.29)
Eq. (3.27) shows that all the terms on the right-hand side of (3.29)

give zero, except those with s’ = 5. Thus

uv-vu =X(gsh:= ggshs)(asa: —a;as)

=Y (gh¥ —gsh,), (3.30)

which is a c-number.
We next use (3.28) for the operators U and V, and take the
thermal average
(exp U exp V) =(exp(U + V) exp{3(UV - VU)). (3.31)
Note that the second term on the right-hand side is a number that
does not depend on T. The quantity U/ + V is a linear combination of
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harmonic displacements. Each displacement has a Gaussian prob-
ability function. The probability function for a linear combination of
Gaussians is itself a Gaussian. We can therefore apply (3.21) to
U+v.

(exp(U + V) = exp{i((U + V). (3.32)

From (3.31) and (3.32)

(exp U exp V) =exp{((U + V))} expB(UV — VU)}
—exp{{U+ VI+ UV + VU + UV - VU))
= exp{HU?+ V) exp(UV). (3.33)

Now (U =(V?). (3.34)

This can be proved formally, but it can be seen on physical grounds.
U is proportional to the component in the direction of x of the
displacement of the origin atom at time zero. V is the corresponding
quantity — apart from a change of sign — for the atom [ at time . But
the zero of time is arbitrary, and for a Bravais crystal all the atoms are
equivalent. So the average values of U” and V? are equal.

From (3.33) and (3.34)

(exp U exp V)=exp(U?) exp(UV). (3.35)

This completes the development of (exp U exp V). Substituting
(3.35)in (3.22) gives

d’o Teon k' N 2
—) = e 5 Y explir. 1
(dn dE')c.,h 47 k 2wh expll >#e"p(”‘ )

xJ exp(UV) exp(=iwt)dt.  (3.36)

—00

3.5 Phonon expansion

A crystal of N atoms has 3N normal modes. The initial state A of the
crystal is given by specifying ny, no . . . nan, the quantum numbers of
the 3N oscillators corresponding to the normal modes. In a general
scattering process. the state of the crystal changes to A', which is given
by another set of quantum numbers n), n3...n3x. The scattering
process may be classified according to the changes in the quantum
numbers,
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Elastic process. All the quantum numbers remain unchanged, i.e.
ni=n; (3.37)

for all i from 1 to 3N.

One-phonon process. All the quantum numbers remain unchanged
except for one, that of oscillator @, which changes by unity, i.e.
ni =n, all i except a.

(3.38)
#L=ng*1,

Two-phonon process. All the quantum numbers remain unchanged
except for two, those of vscillators @ and B, which change by unity,
i€

i =n all i except a and 3,
! ! 1 FEE o (3.39)
HE=na %1, ng=ng+1.

Similarly for three, four, etc, phonon processes.

If we expand the term exp{UV) in (3.36)

1 > 1
exp(UV) =1 +('UV)+5{UV)‘+_ : '+_|(UV}F+' w35 (3.40)
! p!

then the pth term gives the cross-section for all p-phonon processes.
Thus the first term, 1, gives the elastic cross-section. The next term
{UV) gives the cross-section for all one-phonon processes in which ~
is in turn each of the numbers 1 to 3N, and, for each a. n, either
increases or decreases by unity. The term (1/2!,‘»((}‘/}!z gives the
cross-section for all two-phonon processes in which the combination
a, B is in turn each of the 3N (3N —1)/2 combinations of two oscil-
lators selected from 3N, and, for each combination, n, and ng
increase or decrease by unity. And so on.

The statement that the pth term in the expansion of exp(UV)
corresponds to a p-phonon process can be justified in two ways. One
way is to go back to expression (2.49) for the cross-section for a
specific A = A’ transition. Instead of summing over all A’, sum only
over those A" which, for a fixed A, correspond to a p-phonon process.
Then average over A as before. The result, after a somewhat lengthy
calcuiation, is the expression in (3.36) with exp(UV) replaced by
(1/p!XUV)". The second way is simply to inspect the expressions for
each term. They contain é-functions which show that the process is
elastic, one-phonon, two-phonon, and so on. This is the line we shall
follow.
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where Q=k’r sinw=k-‘sm 20 =k sin 8. (3.99)
1%

Thus P=—® (3.100)
Up

where A is the wavelength of the incident neutrons.

We are often interested, not in the absolute intensity of a Bragg
peak, but in the relative intensity of two different Bragg peaks in the
same crystal. If P, and P, are the intensities of peaks for reciprocal
lattice vectors T, and 7,, and #, and @, are the corresponding scatter-
ing angles, then

Py _|Fy(m)[/sin 6,
P, |Fx(rs)/sin 8,
It may be noted that to observe a Bragg peak corresponding to a

particular 7, the value of k must be greater than 37, otherwise (3.95)
cannot be satisfied.

(3.101)

Powder method. A monochromatic beam of neutrons with wavevector
k is incident on a powder sample, i.e. a sample of many small single
crystals with random orientations. For a specified value of |7| (< 2k),
the wavevector k' of the scattered neutrons lies on a cone, known as a
Debye—Scherrer cone (see Fig. 3.9). The axis of the cone is along k
and its semi-angle @ is given by (3.95). Only those microcrystals
whose 7 vectors lie on a cone with axis along k and semi-angle

U=3m—36 (3.102)
contribute to the scattering.

The direction of k is fixed. For each microcrystal, the vector 7
points in any direction in space with equal probability. Thus the

Fig. 3.9 Debye-Scherrer cone for Bragg scattering from a powder.
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probability that the angle between 7 and k lies between ¢ and & + dis
is 27 sin ¢ dy//47r. Again we assume relaxed collimation. Then the
total cross-section for each cone is

T -(CONE) = N( 7r) 4 E |Fxn(m)f J ﬁ(rz—Zk-r cos )3 sin o dey
1% A‘ :
—Un F5in ] E}FN(T)l (3.103)

The sum over 7 is the sum over all reciprocal lattice vectors with the
same value of |7|.

If the neutron detector is at a distance r from the target and has an
effective diameter d, it intercepts a fraction d/2s r sin 8 of the neu-
trons in the cone. The counting rate is therefore

‘|
P= <Dﬁ——7( —— o - (CONE), (3.104)
2mrsin @

where @ is the incident flux.

3.7 Coherent one-phonon scattering

Cross-sections

We return to the scattering from a Bravais crystal. The coherent
one-phonon cross-section is obtained from (3.36) by taking the term
(UV) in the expansion of exp{{UV)}. From (3.23) and (3.24)

AUVIAY=Y (Al(ga. + gas Wheas+hTai)A).  (3.105)

55

The matrix elements on the right-hand side are zero except for terms
with a,a. and a. a,. For these terms we have from (E.13)

(Alasas |A)=n,+1, (Ala;a,A)=n, (3.106)
Thus AUVIA)Y=Y gh¥(n,+ 1)+ ghn, (3.107)

From (3.25), (3.26) and (3.107) we have
(UVY=Y gh¥in,+1)+ghin,)

h (x.e.)

“IMN L @,

+expli(q . I — wit)lny)). (3.108)

[expi—ilg. I —wd)n,+1)
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The expression for the coherent one-phonon cross-section is

( d’o )
(-“-I dE’ coh 1 ph

Ten K N o o(=2W)T explire. I J’T<UV) iwt)d
g thexp [exp k. 1) . exp(—iwt) ds
Teoh k' —~ . ~ (K . es)z
=— — xp(—2W) 3 B i e £
47 k 47M exp( )_Texp(m' ”‘? Wy

X j [exp{—i(qg. I —w)Kn,+1)

+expli(g . I —w)}(n,)] exp(—iewr) dr. (3.109)

The cross-section is the sum of two terms which arise from the two
terms in the square brackets. Consider the first term. The integration
with respect to ¢ is

j’ expli(fws —w )t} dr = 276 (w — w;). (3.110)
The summation with respect to / is
5 3
Xexp{i(qu)_l}=(:r) Yo(ke—q—1). (3.111)
I o«

Thus the cross-section for the first term is

( d’e )
dQYdE"/ cons

_Teon k' 27)° 1 N
dr k Vo 2M exp( LW)E:%‘

{ns +1)

Xé(w—w)d(k—q—7). (3:112)

Similarly the cross-section for the second term is

( d’o )
dn dEJ coh—1

Teon k' (27) 1 (k. g
== s T exp(—2W) Y}
ar k v 2M SPCEWILL

X8(w +w)d(k+q—71). (3.113)

{n,)

The cross-section (3.112) contains the factors &(w —w,) and §(x —
g — 7). So for scattering to occur two conditions must be satisfied:

® = Wy, K=T+q. (3.114)
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From the definition of w (2.42), the first condition is
E—-E'=hw,, (3.115)

i.e. the energy of the neutron decreases by an amount equal to the
energy of a phonon for the sth normal mode. So the scattering
process is one in which the neutron creates a phonon. It is known as
phonon emission. The energy for the phonon comes from the kinetic
energy of the neutron. Eq. (3.115) can be written in the form

o

h.L

— k= k") = ho,. (3.116)
2m
The second condition in (3.114) is
k—-k'=71+gq, (F.1 17

q is the wavevector of the normal mode s. This equation may be
regarded as an expression of conservation of momentum. If we
multiply (3.117) by #, the quantity fi(k —k') is the change in the
momentum of the neutron, while (7 + ¢) is the momentum imparted
to the crystal. However there is no physical significance to the
separate terms AT and hq.

The cross-section (3.113) contains the term §(w + w,) and & (ke +
q — 7). The conditions that must be satisfied here are thus

&

R
= (k2= k)= h, (3.118)
2m

k—k'=1—q. (3.119)

In this process the neutron annihilates a phonon in the sth normal
mode. The energy of the phonon goes into an increase in the kinetic
energy of the neutron. The process is known as phonon absorption.

Coherent one-phonon scattering may be regarded as elastic scat-
tering in the frame of a crystal, whose atoms are displaced from their
equilibrium positions with a sinusoidal variation given by the wave-
vector ¢, and which is moving with the wave velocity of the phonon,
i.e. w,/q, in the direction of q. The condition for constructive inter-
ference for waves scattered by a sinusoidally modulated lattice gives
(3.117) and (3.119), while transforming the velocities of the incident
and scattered neutrons in the crystal frame to their values in the
laboratory frame gives the energy equations (3.116) and (3.118) — see
Example 3.6. An optical analogue of the interference condition is
provided by Fraunhofer diffraction from a grating which is ruled
incorrectly, so that the spacing of the lines, instead of being constant,
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has a sinusoidal variation. The main spectra are flanked by faint
spectra known as ghosts. The wavevectors of the main spectra satisfy
« =1, while those of the ghosts satisfy &« =7 +4.

We may note the factors (n,+1) and (n,) in the cross-sections
(3.112) and (3.113). As T->0, {n,+1)—>1 and (n,) = 0. So the cross-
section for phonon absorption tends to zero as the temperature tends
to zero. This must be the case, because when the crystal is at zero
temperature all the normal-mode oscillators are in their ground
states. Thus there are no phonons to be absorbed.

[t is straightforward to generalise the expressions in (3.112) and
(3.113) to non-Bravais crystals. The cross-section for coherent one-
phonon emission becomes

d’er K2y .1 b, 2
e = S ] = i
(dﬂdE’)..u.,.u k 200 5w, lav dexp( Wayesplix. d)e . ta)

X(ns+ 10w —w; )0 (k —q — 7). (3.120)

with a similar expression for the absorption cross-section. The nota-
tion is the same as on p. 37.

Measurement of phonon dispersion relations

One of the most important applications of the coherent one-phonon
scattering process is to measure the phonon dispersion relations for
the crystal, that is, the frequency w; as a function of wavevector g and
polarisation index j. Before the advent of neutron scattering tech-
niques these relations were largely unknown. Measurements of
quantities like the specific heat give some average value of w, for all
the normal modes, but not the detailed function itself,

Suppose we do the following experiment. We allow a beam of
monoenergetic neutrons to fall on a single crystal and measure the
velocity distribution of the neutrons scattered in a fixed direction.
The experiment is a straightforward one and can be done on a
time-of-flight apparatus (see Brugger, 1965). Consider the
measurements in reciprocal space (Fig. 3.10). The vector k (AO in
the figure) is fixed relative to the reciprocal lattice of the crystal. Since
the scattering angle is fixed, the vector k' lies along the line AD. The
velocity of the scattered neutrons is proportional to k'. So analysing
the scattered neutrons according to their velocity is equivalent to
measuring the cross-section as a function of k'
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Consider the process of phonon absorption. To obtain coherent
one-phonon scattering we must satisfy (3.118) and (3.119). Suppose
we select an arbitrary value of k', e.g. AB in Fig. 3.10. If (3.119)is to
be satisfied that fixes g to be the vector TB. But in general none of the
values of w; for the normal modes with this wavevector satisfies
(3.118). It is only for certain discrete values of k' (AC in the figure)
that both conditions are satisfied, and coherent one-phonon scatter-
ing occurs.

Fig. 3.11 shows a graphical construction for obtaining these values
of k' from the dispersion relations. Since k is fixed, the value of w,
required to satisfy (3.118) is a quadratic function of k' (curve 1 in the
figure). If (3.119) is also to be satisfied, each value of k' fixes ¢, and
we may therefore plot the dispersion relations as functions of k',
They are indicated schematically in the figure. Whenever curve 1
crosses one of the dispersion curves, both (3.118) and (3.119) are
satisfied. Curve 2 represents w, as a function of &' for (3.116), and
when it crosses a dispersion curve the two conditions (3.116) and
(3.117) for one-phonon emission are satisfied.

It is readily shown that whatever the form of the dispersion curves
the two conditions for one-phonon absorption must be satisfied for at
least one value of k' for each polarisation branch in every scattering
direction. For k' = k, the value of w, in curve 1 in Fig. 3.11 is zero,
and hence less than the values on the dispersion curves at that k'
value. As k' becomes large, w, becomes large for curve 1 and even-
tually must be greater than the values on the dispersion curves,
because the latter cannot exceed w,,. the maximum frequency of the
normal modes in the crystal. Since all the curves are continuous,
curve 1 must cross each of the three dispersion curves at least once.
The same reasoning does not apply for one-phonon emission, and
this process may not occur in some scattering directions.

If k and the crystal orientation are kept constant, the values of k'
that satisfy the pair of conditions for one-phonon scattering define
what is known as a scattering surface. There is one such surface for
each polarisation branch. Sections through the scattering surfaces of
aluminium for two values of k are shown in Fig. 3.12.

The curves in Fig. 3.12 are calculated from a set of theoretical
dispersion relations for aluminium. But experimentally we proceed in
the reverse direction. For fixed k, crystal orientation, and scattering
direction, we measure a value of k' at which a coherent one-phonon
peak occurs. We then substitute into (3.116)(3.119), and hence
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Fig. 3.10 Diagram in reciprocal space for coherent one-phonon scattering;
® reciprocal lattice point

Fig. 3.11 Coherent one-phonon scattering: diagram for determining values of
k' for fixed k, v, and 6.

Wm - - = = =
|
L Dispersion
curves
|
Curve 2
0 k k' ——

Emission Absarplion
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Fig. 3.12 Sections through the scattering surfaces of aluminium in the (001)
plane (a) for incident neutrons of wavelength 6.74 A, and (b) for incident
neutrons of wavelength 1.08 A. (Squires, 1956.)
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obtain w, and q for a particular phonon. By varying the values of |k,
the angle between k and the crystal lattice, and the scattering angle,
we may determine the w, and g values for many phonons. Some
results for magnesium, obtained with a time-of-flight spectrometer,
are given in Figs. 3.13 and 3.14. Fig. 3.13 shows the time-of-flight
spectrum of the scattered neutrons for fixed k, ¢, and 6. Fig. 3.14
shows the phonon frequencies obtained from a large number of such
spectra.

The time-of-flight method of measuring phonon frequencies suffers
from the disadvantage that we cannot preselect the g value of the
phonon. However, a different technique, developed originally by
Brockhouse (1960), overcomes this disadvantage. Crystals are used
both to produce monoenergetic incident neutrons and to analyse the
energy of the scattered neutrons. The apparatus is known as a triple-

Fig. 3.13 Example of a time-of-flight spectrum for neutrons scattered in a
fixed direction by a crystal of magnesium. The peaks are due to coherent
one-phonon absorption. Part of the incoherent elastic peak can be seen on
the right of the figure. (Squires, 1966.)

'/ms

w 10" 5!
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axis spectrometer. It is possible to control the experimental variables —
the orientation of the various crystals, and the scattering angle — in
such a way that the ¢ value of the phonon to be measured is fixed at
any required value. The method is particularly useful when we want
to know how the frequency of a particular mode varies with, say, the
temperature of the crystal. For a description of the triple-axis spec-
trometer, and its operation in the constant-q mode, see lyengar
(1965) and Squires (1976).

By means of time-of-flight and crystal spectrometers the phonon
dispersion relations have been determined for a large number of
crystalline materials, including metallic, ionic, covalent, and rare-gas

Fig. 3.14 Phonon frequencies of magnesium at 290 K along the direction
I’KM. The curves correspond to an eight-neighbour axial-force model. Inset:
symmetry plane in reciprocal space perpendicular to the hexad axis showing
the direction 'KM. (Pynn and Squires, 1972.)
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crystals. The object of the measurements is to obtain information
about the interatomic forces. A variety of methods have been pro-
posed for interpreting the results. Some employ empirical models
with force constants treated as adjustable parameters; others are
based on more physical models. A systematic survey of the experi-
mental results, together with a review of the theories, will be found in
Venkataraman, Feldkamp, and Sahni (1975). For a briefer account
see Cochran (1973).

Polarisation vectors

We may note the term (x.e,)’ in the cross-sections (3.112) and
(3.113). From measurements of the intensities of the peaks for one-
phonon scattering, it is possible, in principle, to deduce the polariza-
tion vectors e,. There have not been many systematic measurements
of this kind, but Brockhouse et al. (1963) have reported some on
sodium and germanium.

In general the vectors e, corresponding to a given wavevector ¢ are
not related in a simple way to the direction of g. But in certain cases
there is a simple relation. For example, if g lies in the (001) plane of a
cubic crystal, one of the e, is along the [001] axis. If the scattering
geometry is arranged so that « is in the (001) plane, (« . e,) is zero for
this mode. The result is sometimes used in one-phonon measure-
ments to eliminate the effects of one of the polarisation branches.

Anharmonic forces

Although ideally the velocity spectrum of neutrons scattered in
coherent one-phonon processes is a set of §-functions, in practice the
peaks have finite widths. The broadening arises from several factors.
The first is the resolution of the apparatus. The wavevectors k and k'
have a finite spread in magnitude and direction. Secondly the crystal
has a mosaic spread. The third and most interesting reason is that the
interatomic forces in the crystal are not truly harmonic.

The analysis of the displacements of the atoms from their equili-
brium positions in terms of a set of non-interacting normal modes is
only correct for pure harmonic forces. In fact the forces have an
anharmonic component (otherwise the crystal would not expand on
heating) which causes the normal modes to interact with each other.
The energy in a mode does not remain constant, but is gradually
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transferred to other modes. Thus the mode is represented in time by a
damped sinusoidal wave, which means that its frequency is no longer
sharp. It is spread over a finite range; the greater the anharmonic
component, the greater the spread. Hence the scattered neutron
groups occur, not at a sharp value of k', but over a range of values.

As the temperature of the crystal is raised, the anharmonic
component of the forces increases, and the widths of the neutron
peaks increase. By measuring the widths we can study the anhar-
monic contribution to the forces. In addition to broadening the
frequencies of the normal modes, anharmonic forces also produce
changes in the mean values of the frequencies. Both effects have been
measured. A discussion of the theory of anharmonic forces in crys-

tals, together with references to experimental work, will be found in
Cowley (1968).

3.8 Coherent multiphonon scattering

The coherent two-phonon cross-section is obtained from (3.36) by
taking the term (1/2!XUV)? in the expansion of exp(UV). It can
readily be shown that the cross-section contains two 8-function terms
which give rise to the equations

K5 .,
ﬁ(k‘—kz)zh(xw”:w,?), (3.121)

k—k'=1+q, +q. (3.122)
Both conditions must be satisfied. The neutron is scattered having
simultaneously created or annihilated a single phonon in two
different normal modes.

In the one-phonon process we saw that for fixed k, scattering angle.
and crystal orientation, scattering occurs only for discrete values of
k'. However, in the two-phonon process, if we select an arbitrary k'
within a certain range, we can always find combinations of two
normal modes whose q and w, values satisfy (3.121) and (3.122). So
two-phonon scattering does not give rise to peaks in the velocity
spectrum of the scattered neutrons. It gives a continuous spectrum; in
other words it adds to the background (Fig. 3.13). This is fortunate, as
it enables us to separate the effects of one- and two-phonon scat-
tering.

For higher phonon processes, we get two equations like (3.121)
and (3.122) with additional terms — w,,, g: and so on. It is true, a
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fortiori, that for an arbitrary value of k' we can find combinations of
normal modes to satisfy the two equations.,

3.9 Incoherent scattering

The basic expression for the incoherent scattering cross-section is
given in (2.69). We consider a Bravais crystal and put

Ri(t)=1+ul(t). (3.123)
Then
2:: J{cxp{*ik . Ri(0)} explirc . Ri(1)}) exp(—iwt) dt
= NJ (exp{—isc . ug(0)} explirc . uo(t)}) exp(—iwt) dt
= NJ' (exp U exp V) exp(—iwt) di, (3.124)
where U=-ik.uy(0), and Viy=ix. u(r). (3.125)

In summing over / in (3.124) we have used the result that for a
Bravais crystal all the terms in the sum are equal. U is the same as the
previous U, defined in (3.23). Vj is the previous V (3.24) evaluated
at [ =0. From (3.35)

{exp U exp Vi) :exp(Uz) exp{UVy). (3.126)
Thus

(dz—g) .o exp(U?) j exp(UV,) exp(—iwt) dr.
dQdE' /e 4m k 27h
(3127

As before exp(UVy) is expanded in powers of (UVy). The pth term
corresponds to a p-phonon process,

To calculate the incoherent elastic scattering we replace exp(UVy)
by unity in (3.127) and use the results (3.42) and (3.43). We then
integrate with respect to E’, and obtain the resuit

dQ/; 4
The only dependence of this cross-section on the scattering direction
is in the Debye—Waller factor, which depends on x. At low tempera-
tures the Debye-Waller factor is close to unity, and the scattering is
almost isotropic.

(f) =T N exp(—2 W), (3.128)
incel
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The incoherent one-phonon cross-section is obtained from (3.127)
by replacing exp(UVy) by (UVy). From (3.108)

(UVy) = ):( )ZL{(HS + 1) expliwst )+ {n;) exp(—iw,t)},
Wy
(3.129)
do Tine k' 1 (. e)
= Fimo 2 exp (I el
(dﬂ dE’),ml,,h an k 2m SPEWIL =

x{{n;+1)6(w — w,)+<n,)8(m +w,)}. (3.130)
The first term in the curly brackets corresponds to phonon emission
and the second to phonon absorption.
Consider the emission cross-section. It contains only one &-
function, §(w — w,). Thus only the energy condition

w=w, Or —n{k-—k'2)=nw, (3.131)

needs to be satisfied. For incoherent scattering there is no inter-
ference condition like (3.117). Therefore, for a given k, 6, and crystal
orientation, incoherent one-phonon scattering occurs for a continu-
ous range of k' values. For a given k', we get scattering from all
normal modes whose w, values satisfy (3.131). The cross-section
therefore depends on the number of modes that have the correct
frequency. We can express the cross-section in terms of the phonon
density of states Z(w).

dzﬂ' U|m_ k’ 3N ((K es) )a\
— 2W —————Z + 1),
(dﬂ dE')mH, an k 2m SPC2W) (@hn+1)
(3:132)
where w=(E—-E")/h, (3.133)
and {n+1)=3{coth(GhwB)+1}. (3.134)

The quantity ((# . e‘)z)a\. is the value of (k. e, ) averaged over all the
modes with frequency w. For a cubic crystal

(< . €))av=1K7, (3.135)
and the incoherent one-phonon cross-sections are given by
dza Umc k'- N Z(w) 1
e —-2W {coth(zh 1)
(dﬂ dE'),,,ct, 47 k 4MK exp( ) " lcothGhwB)£ 1}

(3.136)

By measuring the incoherent one-phonon scattering as a function
of E’ for a cubic crystal, the phonon density of states may be



