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Abstract 
During the past decade there has been considerable progress in the study of the 

structure and elementary excitations of liquid helium. This has largely arisen from 
the development and refinement of neutron, x ray and light scattering techniques 
and also from more detailed ultrasonic measurements. A large part of this review 
is concerned with describing the results of these experiments and their implications 
for theories of liquid helium. During the last few years there has also been con- 
siderable progress made in the theory of the excitations in liquid helium. These 
developments are briefly reviewed and the most promising lines of development 
indicated. 

This review was completed in August, 1972. 
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1. Introduction 

Liquid helium has been a source of fascination for physicists ever since helium 
gas was first liquefied by Kammerlingh Onnes in 1908. Its boiling point at atmo- 
spheric pressure is 4.2 K and it remains a liquid at absolute zero unless a pressure 
of about 25 atm is applied. At a temperature of 2.17 K it has a phase transition 
above which it is usually referred to as He I and below, He 11. This phase transition 
is marked by an anomaly in the specific heat, C,, and because of the similarity 
between the C, against T curve and the Greek letter A, the temperature at which the 
anomaly occurs is known as the h point. Above the transition temperature liquid 
helium, in spite of its obvious quantum properties, shows many of the thermo- 
dynamic and hydrodynamic properties characteristic of a classical liquid. Below 
2.17 K it exhibits many unusual properties, the most outstanding of which is that 
of superfluidity-the apparent vanishing of flow resistance for passage of the liquid 
through narrow channels. These properties are characteristic of natural helium 
which is nearly l O O ~ / ,  4He. The  lighter isotope 3He is present in natural helium in 
such small quantities (about one part in lo6) that its effects are not noticeable in most 
experiments. 

The  normal boiling point of pure 3He is 3.2 K and it, also, does not solidify at 
T = 0 except under pressure. It does not, however, have a h transition, at least 
above a few millikelvins, nor does it exhibit any superfluid properties. The  differ- 
ences in the properties of these two isotopes of helium are believed to arise from the 
differences in their nuclear spins: *He has zero spin and should therefore obey 
Bose-Einstein statistics and 3He, with a spin of +, should obey Fermi-Dirac 
statistics and therefore be analogous in some respects to nuclear matter. I n  spite of 
the great interest in 3He and 3He-4He mixtures this article will not discuss their 
properties. Many excellent reviews on the thermodynamic and hydrodynamic 
properties of both isotopes of helium and their mixtures exist and are valuable 
sources of further background information. This article will chiefly be concerned 
more with those properties of 4He which may be probed by the scattering of 
various forms of radiation-electromagnetic, particle and acoustic. 

The  anomalous thermodynamic and flow properties of superfluid helium have 
given rise to an overwhelming amount of experimental and theoretical activity over 
the past half century. On the one hand experimentalists have been concerned to 
elucidate these properties in as much detail as possible, while on the other hand 
theoreticians have been fascinated by the problem of understanding these properties 
in terms of the known interactions between helium atoms. 

Attempts to understand the macroscopic properties of superfluid helium led to 
the phenomenological two-fluid model of London based on the concept of a Bose- 
Einstein condensation. In  this model, which has been described in detail in many 
excellent reviews and monographs, superfluid helium is assumed to consist of two 
interpenetrating fluids, a ‘superfluid’ component and a ‘normal’ component. A 
theoretical basis for this model was provided when Landau (1941, 1947) suggested 
that the properties of liquid helium could be explained by considering the system as 
a background fluid plus a spectrum of weakly interacting elementary excitations 
above the ground state. These excitations were given the names ‘phonons’ and 
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‘ rotons’ and were associated with the normal fluid while the background fluid was 
identified with the superfluid. 

Landau pictured the phonon excitations as long wavelength density fluctuations 
with energy, E, directly proportional to their momentum, p ,  and travelling with the 
velocity of sound c. Thus 

in the long wavelength limit. In  calculations of hydrodynamic properties such as the 
viscosity (Landau and Khalatnikov 1949) these excitations were assumed to exhibit 
dispersion such that 

where y -  lo3’ g-2cm-2s2. At shorter wavelengths (larger p )  the E against p dis- 
persion curve for the energies of the excitations passed through a minimum such 
that 

E = CP (1.1) 

E = ~ ~ ( 1 - 7 9 ~ )  (1.2) 

E = A + -  (P-Po>2 
2P 

where A-9 K, p 0 / E - 2  8-l and p-0.5 helium masses. The  excitations in the 
region of this parabolic minimum were given the name ‘rotons’. 

At the time of Landau’s classic work the main interest was to explain the 
anomalous thermodynamic and hydrodynamic properties below the h point. At 
these temperatures (<2-17  K)  only those excitations near p = 0 and p = P o  had 
sufficiently high thermal populations to have a significant effect on the low tem- 
perature macroscopic properties. Accordingly, Landau did not concern himself with 
the details of the dispersion curve far from these values of p .  The  parameters in the 
expressions for the excitation energies were deduced from macroscopic properties 
such as the velocities of first and second sound and specific heat. 

This development which is described in detail in the monograph by Khalatnikov 
(1965) is a more microscopic and more powerful theory than the two-fluid model, 
but it is still a phenomenological theory because the concepts and parameters are 
obtained from experiment rather than from the microscopic interactions between 
the atoms. Feynman (1954), and Feynman and Cohen (1956), attempted to obtain 
a more microscopic model and put Landau’s ideas on a firmer theoretical basis. 
Cohen and Feynman (1957) also suggested that the excitation spectrum could be 
directly determined by neutron inelastic scattering experiments. 

The  first observation of the excitations in liquid helium was made by Palevsky 
et a1 (1957) using neutron inelastic scattering. Since then measurements of the 
detailed shape of the energy against momentum (or wave vector) dispersion curve 
for the excitations have been made in several laboratories. These experiments con- 
firmed Landau’s essential ideas and hence have provided both a basis for more 
detailed microscopic theories, and a framework for the interpretation of many recent 
experiments. In  particular since the dispersion relation in liquid helium is far 
simpler than the phonon dispersion relation in a solid, experiments on the excita- 
tions in liquid helium are now frequently used as a testing ground for theories of the 
effects of the interactions between excitations. I n  recent years refinements in 
neutron, x ray, light scattering and ultrasonic techniques have provided a wealth of 
experimental results of sufficient precision to permit stringent tests of theoretical 
developments. It is the purpose of this article to review the present status of these 
experimental results on the static and dynamic structure of liquid helium and 
briefly to indicate their relevance to current theoretical concepts. I n  most of the 
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article we shall restrict attention to the low temperature properties, and although 
we shall describe the temperature dependence of many properties we shall not 
attempt a detailed description of the properties near the h point transition. This has 
recently been studied extensively as a test of modern theories of second-order phase 
transitions and we omit discussion of it because many of its features are characteristic 
of phase transitions rather than of liquid helium. The  techniques and results of 
x ray and neutron scattering are, in many respects, complementary to each other 
and are discussed in $02 and 3.  The  wavelengths of both x rays and thermal 
neutrons are N lo-* cm and are thus of the correct magnitude to be diffracted by 
solids and liquids through reasonably large angles. For reasons of intensity, how- 
ever, it is usually possible to obtain greater precision with x rays. On the other hand 
the energies of thermal neutrons are N eV and hence energy changes caused by 
interaction with elementary excitations are readily measured ; the corresponding 
x ray energy is N lo4 eV and thus energy changes N eV or so are practically 
impossible to measure directly. I n  addition to the xray  and neutron scattering 
experiments, which are able to probe the system over a wide range of wave vector 
transfer Q (Q = p / Z ) ,  there are other techniques which give extremely valuable 
information. Of these techniques we shall discuss ultrasonic measurements in Q 4 
and light scattering in 0 5. Because of the long wavelengths of these forms of radia- 
tion the measurements are restricted to very small ( - 2 x 10-3 A-l) values of Q but 
the energy resolution obtainable with these techniques leads to information about 
the interactions between the excitations which cannot readily be obtained in other 
ways. 

Some of the theoretical ideas which are directly related to the experiments are 
described in $0 2-5. More microscopic theories which are less directly relevant but 
nevertheless important contributions to our understanding of liquid helium are 
briefly discussed in Q 6. 

2. Neutron and x ray scattering techniques 
2.1. Scattering theory 
2.1.1. Dynamic and static structure factor. A function of central importance in the 
description of liquid helium, and indeed of any fluid, is the dynamic structure factor 
S( Q ,  w ) ,  first discussed by Van Hove (1954). The  Fourier transform of S( Q ,  w )  
over the momentum and energy variables Q and w yields the time dependent pair 
correlation function, G(r, t ) ,  which, for a classical system, is the probability that, 
given an atom at position r = 0 and time t = 0, there is an atom at position r and 
time t. S(Q,  w )  is thus related to a detailed record of the spatial and temporal 
behaviour of atoms in the fluid. Van Hove showed that the partial differential 
coherent neutron scattering cross section per atom for a monatomic system is 
given by 

I n  this expression dQ is the solid angle acceptance of the scattered beam and d E  the 
corresponding energy interval. The  wavenumbers k, and K’ (k = 2x/h) refer, 
respectively, to the incident and scattered neutron beams, 5 is the bound atom 
scattering cross section, Q the momentum transfer, and Efiw the energy transfer 
which takes place in the scattering process. This result was derived on the basis 
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of the first Born approximation. In  view of the isotropy of a liquid the vector 
nature of Q is not important and we shall, instead, be concerned with the quantity 
Q = l Q l *  

Direct information about S(Q, w )  may be obtained in certain scattering experi- 
ments where it is possible to observe both the momentum transfers (6Q) and the 
energy transfers (6w) in the distribution of the scattered radiation. As mentioned 
in $1, both parameters can readily be measured in a neutron scattering experiment. 
The  wavelengths of typical xrays are of the correct magnitude to probe a large 
range of Q space but since d E  in (2.1) in any practical x ray experiment is very 
much larger than typical excitation energies, x ray scattering experiments essentially 
integrate over all energy transfers. Thus the scattered x ray intensity depends on 

S(Q) = Jm S(Q, w )  dw. (2.2) 
-m 

While x ray scattering is therefore inappropriate for investigations of the motions 
of atoms it is capable of yielding precise information about the time independent 
spatial distribution of atoms. The  function S(Q) is the familiar static structure 
factor which is related to the pair correlation function g(r) through the expression 

S(Q) = l+p/exp( iQ. r ) (g( r ) -1)dr  

whereg(r) is the probability that, if there is an atom at the origin, then, at the same 
time, there is an atom a distance r away. In  a nonvibrating crystal S( Q) is simply a 
diffraction pattern which mainly consists of elastic (Bragg) peaks at reciprocal 
lattice points, the positions and intensities of which allow the spatial structure to be 
determined. In  a vibrating crystal it is also possible to observe the thermal diffuse 
scattering which is caused by the lattice vibrations. The  intensities of the neutron 
or x ray peaks arising from the Bragg scattering are reduced from the values they 
would have in an ideal rigid lattice by the Debye-Waller factor. This is a function 
of the total momentum transfer and the amplitudes of the atomic vibrations and is 
similar to the recoil-free fraction which arises in the Mossbauer effect. Knowledge 
of S( Q) obtained from integrating the scattering over all energy transfers thus gives 
direct information about the instantaneous positions of the atoms. Measurements 
of the Debye-Waller factors give indirect information on the atomic motions. 

In  a typical liquid S(Q) does not consist of sharp peaks but rather is a con- 
tinuous distribution which, at nonzero temperature, has a temperature dependent 
value at Q = 0, a broad maximum usually near Q = 2 i%-l ( Q  = (471./h) sin ( 4 / 2 )  for 
elastic scattering where h is the wavelength of the radiation and 4 the angle of 
scattering) and subsidiary maxima at larger values of Q. This structure reflects the 
short range order in the liquid. As Q becomes large S(Q) approaches unity and the 
effects of correlations between atoms disappear. Experiments to determine S(Q) 
have been carried out for a large number of liquids, including liquid helium, using 
both x ray and neutron scattering techniques. 

Many of the properties of S(Q, w )  have been measured by neutron scattering 
for a number of classical liquids as well as for liquid helium. The  scattering function 
at small Q and w ,  corresponding to large distances and long times, consists of a 
‘quasi-elastic’ peak centred on zero energy transfer, the width of which is related 
to the diffusion coefficient. In  the large Q and large w regime the interatomic inter- 
actions are of little importance and the scattering is similar to that expected from a 
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gas of free particles. It consists of a Doppler broadened distribution with an energy 
width which rises linearly with Q, and a mean energy, given by the peak position, 
which rises quadratically with Q. 

2.1.2. Conservation equations. The conservation equations in a scattering experiment 
may be expressed as 

and 

where &, and &' are wave vectors of the incident and scattered radiation, respectively, 
and E, and E' the corresponding energies. Q is the wave vector transfer in the 
experiment and q the intrinsic wave vector of the excitation. In  liquid helium these 
are identical and so we shall use Q and q interchangeably in such a way as to 
conform to normal usage. 

In  many systems the excitations above the ground state may be described by a 
well defined dispersion relation, connecting their energy and momentum, so that 

& , - & I  Q = q (2.4) 

Eo- E' = Rw (2-5 1 

zw = Zw(q).  (2.6) 
In  such cases the constraints imposed on the scattering by (2.4), (2.5) and (2.6) 
ensure that the scattered neutron energy distributions contain sharp peaks corre- 
sponding to scattering by single excitations. Conversely the observation of sharp 
peaks, broadened only by the experimental resolution, is evidence that a dispersion 
relation does exist and knowledge of the quantities in (2.4) and (2.5) allows this 
dispersion relation to be determined. Such experiments are readily done with 
neutron scattering but, for the reasons mentioned above, other forms of radiation 
are not as universal because of the inability to determine w (x rays) or the inability 
to make measurements over a large range of Q (optics and acoustics). 

2.1.3. lwoments of S(Q,w).  In  discussions of scattering from liquids it is often 
convenient, particularly in the case of neutron scattering, to consider the moments 
of S(Q,  w) defined as 

X 

<U>, = S(Q,  w) dw. (2.7) 

The  moment for which n = 0 is just the static structure factor, S(Q), and is the 
function obtained by simply integrating the observed energy distribution over all 
energy transfers. It is directly obtainable from the x ray scattering and may be 
obtained from the neutron scattering either by integrating the observed energy 
distribution for various momentum transfers or by carrying out the experiment so 
that there is no energy analysis of the scattered beam and scattered neutrons of all 
energies are observed. The  problems associated with the latter are discussed in 
0 2.2.2. 

The  moment n = 1 is given by 

ZQ2 f wS(Q,w)dw = - 
--to 2 M  
m 

where M i s  the mass of the helium atom in this case. The  expression (2.8) is variously 
known as the first moment theorem or the f-sum rule. For a monatomic system 
such as liquid helium it is quite general in its validity provided that there are no 
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velocity dependent forces between the atoms, As there is no reason to believe that 
it is invalid, it is customary to use (2.8) and the S ( Q )  obtained from the integrated 
energy distribution to provide critical checks on the accuracy of the observed 
energy distributions. This is particularly useful when considering possible high 
energy tails on the distributions. If the observed energy distribution were a single 
symmetrical peak, such as a gaussian, then the centre of this peak would be at the 
position expected for scattering from a gas of free particles. 

The  static susceptibility of the liquid is directly related to the n = - 1 moment. 
The  function G(Q) is defined as 

G(Q) = /" AS(Q,w)dw 
--CO w 

and 
1 lim G(Q)  = - 

Q -10 2Mc2 

where c is the isothermal velocity of sound (Pines 1966a,b). 
The  higher order moments ( n  = 2,3, . . .) are of limited interest partly because 

it is difficult to obtain useful theoretical expressions for them (they often depend 
on the details of the interatomic interactions) and partly because it is extremely 
difficult to determine them experimentally with sufficient precision for them to 
serve as significant tests of any theory. A second-moment relation which is valid 
at high temperatures is applicable to classical liquids but not to liquid helium. An 
expression for the third moment of the scattering from liquid helium has been 
worked out by Puff (1965)  but its relationship to available experimental results has 
not been established. 

2.1.4, Feynman theory and structure of S(Q,  w ) .  The  first detailed calculation of the 
dispersion curve for the elementary excitations in liquid 4He was carried out by 
Feynman (1954). He obtained the result 

(2.10) 

This result follows from the moment relations of $2.1.3 if it is assumed that all of 
the scattering occurs in a sharp 6 function peak whose energy corresponds to the 
phonon excitation energy. If 

then 
S(Qt w )  = z(Q> * (U - 4Q)) 

J -m 

- ZQ2 -- 
2M 

and 

leading directly to (2.10). 
It is well known, however, that (2.10) is correct only as Q+O and that E(Q) ,  

from (2.10), for Q - 2  8-1 is about a factor of two higher than is observed. Thus,, 
as pointed out by Cohen and Feynman (1957) and emphasized by Miller et aZ(1962), 

S(Q> = z(Q) 
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S(Q,  U )  must contain scattering which does not arise solely from the excitation of a 
single phonon. More generally 

(2.11) 

In  the case of scattering by phonons in a harmonic crystal SI,@, w ) ,  in addition to 
Bragg peaks, has contributions from scattering with the excitation of more than one 
phonon. This extra scattering is usually referred to as multiphonon scattering and, 
by analogy, in this article we will refer to S,,(Q, w )  as the multiphonon part of the 
scattering. 

I t  was shown by Feynman that, at T = 0, 

EQ lim S ( Q )  = - 
Q -10 2Mc 

(2.12) 

which, in conjunction with (2.10), leads directly to (1.1). Since S I I ( Q )  is propor- 
tional to Q4 (Miller et al 1962) it follows that 

2Q lim Z( 9)  = - 
Q -0 2Mc (2.13) 

also. 
I n  the high Q limit where interatomic interactions are not important (and, 

incidentally, for all Q for an ideal gas) S ( Q )  = 1 and (2.10) reduces to the energy 
of a free particle and the corresponding scattering is as described in $2.1.1. 

2.1.5. Qualitative description of the one-phonon scattering. The apparently valid 
description of the excitations in liquid helium in terms of well-defined phonons 
encourages the use of the analogy with the phonons in a harmonic crystal, in spite 
of the lack of long range spatial order in the liquid. This analogy can be used, with 
limited success, to discuss the neutron scattering from liquid helium. As in liquid 
helium the energies of long wavelength phonon excitations in a crystal depend 
linearly on their momenta and at low temperature, the constant+ ($ 2.2.2), energy 
loss, one-phonon neutron cross section is proportional to 

exp ( - Qz uz) 
w 

where exp ( -  Qz u2) is the Debye-Waller factor and U is the mean amplitude of 
vibration of the atoms. In  a harmonic crystal U may be calculated, on the Debye 
model, from the temperature and the Debye temperature, OD. Assuming that OD 
for the liquid is similar to that for the solid near the same density its value is N 25 K. 
I n  the low Q limit exp ( - Q2uz) is unity and w is proportional to Q. Thus the one- 
phonon intensity in the harmonic solid has the same Q dependence as in liquid 
helium. The effect of the Debye-Waller factor with OD = 25 K is to make the cross 
section a maximum near the position of the roton minimum ( -  2 a-1) and then for 
it to fall rapidly at larger Q. As discussed in 3 3.3.1 this behaviour is in qualitative 
agreement with observed intensities although there are significant discrepancies. 

2.2. Neutron scattering techniques 
2.2.1. Neutron sources. The principal sources of thermal neutrons are nuclear 
reactors. Neutrons of high energy ( N 1 MeV) are produced in the fission process 
and are slowed down in a moderator which is usually composed of atoms of low 
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atomic weight and low neutron absorption cross section. In  equilibrium the neutron 
energy distribution is maxwellian with parameters determined by the temperature 
of the moderator. I n  most reactors the moderator is usually at room temperature 
(300 K) although in some reactors the moderator temperature is significantly higher 
than this. It is also possible to install special moderators, at the end of specific 
beam tubes in the reactor, which are at either very low or very high temperatures. 
Liquid hydrogen is often used as a cold moderator while beryllium, beryllium 
oxide and graphite are suitable for hot moderators at temperatures in excess of 
1000°C. Although the room temperature moderator is the most useful for neutron 
scattering studies of liquid helium, and incidentally most other systems, the cold 
moderator, with its increase in neutron flux at low energies, has some advantages for 
the low-energy-transfer, high resolution experiments which characterize the one- 
phonon part of the scattering. The  increase in neutron flux at high energies available 
with a hot moderator is useful in studies of the high-energy-transfer, high- 
momentum-transfer region. 

I t  is also possible to produce beams of thermal neutrons from particle accelera- 
tors. The  energetic charged particles interact with matter to produce high energy 
neutrons which are then moderated to thermal energies. Such sources exist but 
none of these give neutron fluxes as high as can be obtained in the better nuclear 
reactors, although in principle this process can yield higher fluxes than can readily 
be obtained from a reactor. 

In  order for them to be used in a scattering experiment beams of thermal 
neutrons are taken out through holes in the reactor shield. From the maxwellian 
spectrum a narrow energy slice is selected and allowed to fall on the specimen. 
The  energy and direction of a scattered beam are measured and the corresponding 
energy and momentum transfers determined from (2.4) and (2.5). The  techniques 
for carrying out these measurements are discussed in the next subsection. Figure 1 
shows a schematic diagram of the NRTJ reactor at Chalk River, which was the 
source of neutrons for the authors’ measurements discussed in this review. 

2.2.2. Neutron spectrometers. In  order to carry out neutron inelastic scattering 
experiments it is necessary to be able to define the wavelength (or energy) and direc- 
tion of the neutron beams incident on and scattered by the specimen. (In studies of 
crystals it is also necessary to define the orientation of the crystal with respect to 
these beams but this is not necessary for liquids.) There are two principal tech- 
niques for determining these parameters-the pulsed beam time-of-flight and the 
crystal spectrometer. Many instruments combining both principles have also been 
built and have uses in special applications. 

In  the standard pulsed beam technique the incident beam is chopped by a 
mechanical rotor (or series of rotors) into pulses of monoenergetic neutrons with 
typical pulse lengths of about 10 IJS. The  energies of the scattered neutrons are 
determined by their electronically measured time-of-flight over a known path length. 
Although the duty cycle is usually less than 1% much of the intensity loss can be 
recovered through the use of a large array of detectors. Such techniques are par- 
ticularly suited for use in conjunction with a pulsed neutron source such as might be 
obtained from an accelerator or a pulsed reactor and have been described in detail 
by Brugger (1965). 

A variation of the time-of-flight spectrometer known as the rotating crystal 
spectrometer (RCS) (Brockhouse 1961) is of some interst because of its extensive use 
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in liquid helium experiments (Cowley and Woods 1971, Harling 1971). In  this 
method the mechanical rotors for velocity selection are replaced by a single crystal 
spinning about a vertical axis. Whenever the crystal planes come into the Bragg 
position a burst of monoenergetic neutrons is reflected from the crystal and 
impinges on the specimen. Other features of the spectrometer are similar to those of 
the ordinary time-of-flight devices. A schematic diagram of this type of spectro- 
meter is shown in figure 2. 

'Track 
radius 3.3 m 

. 
Figure 2. Schematic diagram of rotating crystal spectrometer (RCS). The collimators are 

denoted by C and monitor counters by M, MI and M2. From Cowley and Woods (1971). 

In  the triple-axis crystal spectrometer (TACS), shown schematically in figure 3 
and discussed in detail by Iyengar (1965), the neutron wavelength (and hence 
energy) is determined by means of Bragg reflection from the monochromator and the 
analyser single crystals. The  neutron directions are defined by collimators. The  
detector is usually a gas filled proportional counter containing either loB or 3He. 
Although the crystal spectrometer does not, usually, have more than one detector 
it does have a significant advantage over time-of-flight devices. By programmed 
control over the spectrometer angles it is possible to determine neutron energy 
distributions at fixed and preselected values of the wave vector transfer Q (Brock- 
house 1961). I n  experiments with fixed scattering angle + and fixed incident 
neutron wave vector k,, the neutron wave vector transfer, Q, is a function of k' and, 
hence, of the energy transfer %CO, The observed energy distributions, therefore, 
extend over a range of Q and are not suitable for a direct comparison with theory. 
The  ability to carry out constant-Q experiments is a great boon and is particularly 
useful in regard to many of the liquid helium experiments where it is often necessary 
to cover a large range of energy transfers for a given wave vector transfer. 

One of the most serious difficulties with both of these instruments arises from 
the reflection by the monochromating and analysing crystals of neutrons of energies 
which differ from those desired. In  particular, a crystal set to reflect a beam of 
wave vector lz,, and energy E,, will usually also reflect neutrons of wave vector 2k0 
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and energy 4E,. I t  is common to suppress the effect of this order contamination 
through the use of (111) reflecting planes of Ge crystals (for which the (222) 
reflections are absent) or by the use of a beryllium, quartz or pyrolytic graphite 
filter. 

Monochromator  

Moni tor  c o u n t e r s  

c o u n l e r  

Figure 3. Schematic diagram of triple-axis crystal spectrometer (TACS). 
From Cowley and Woods (1971) 

2.3. x ray scattering techniques 
2.3.1. Instruments. A comprehensive review of x ray scattering from liquids has 
been given in this series by Furukawa (1962). The  most recent such experiments 
on liquid helium have been carried out by Achter and Meyer (1969) and by Hallock 
(1972). The spectrometer used by Achter and Meyer is described in detail by 
Narahara (1968) who used it for measurements of 3He. A schematic diagram of the 
Hallock spectrometer is shown in figure 4. The x ray beam is produced initially 
from commercially available x ray tubes which, in these experiments, makes use of 
the Cu K a  radiation ( A  = 1.54 A). The monochromatic character of the beam is 
improved through the use of either a crystal monochromator or a suitable filter. 
(As a point of interest typical x ray beams are about 1 mm in width while neutron 
beams are typically about 5 cm.) Electronic techniques are used in the detection 
system in order to eliminate events which do not arise from the detection of Cu K a  
x rays. Because of the low temperatures required for the experiment, specially 
designed specimen containers must be built which will be reasonably transparent 
to the x ray beam. Beryllium is generally used as window material because of its 
small atomic number, and hence its relatively low x ray scattering power. Mylar is 
also used for window material in some applications. This problem is not so serious 
in neutron scattering and reasonably thick aluminium windows, which scatter only 
a very small fraction of the beam, are convenient to use. 

2.3.2. x ray measurements. The intensity of x rays scattered from a fluid is 

J(4,  Q) = ‘ST T ( 4 )  N(+)  ( ~ e  S(Q> + oil (2.14) 
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where uT is the Thompson cross section for scattering by a free electron, T(4)  is a 
geometry dependent transmission factor, N(+) is the number of atoms in the sample 
which contribute to the scattering and is also angle dependent, ue is the elastic or 
coherent x ray scattering cross section, and ui is the inelastic or incoherent x ray 
scattering cross section arising from Compton scattering. T(+) takes into account 
depletion of the beam arising from multiple scattering and absorption processes. 

n 

counter 

Figure 4, Schematic diagram of Hallock’s x ray spectrometer. From Hallock (1972). 

Since only a few per cent of the incident beam is removed by the presence of the 
helium, this factor may be readily evaluated. N(4)  is usually allowed for by measur- 
ing the scattering from an ideal gas for which S(Q> = 1. Neon gas at 77 K is very 
suitable for this purpose and is the gas usually used. The  cross sections ue and ui 
have been calculated by Kim and Inokuti (1968) for helium and by Tavard et a1 
(1967) for neon and include the form factor. 

With the aid of the factors which can be calculated, S(Q) is derived from 
measurements of the intensity, I ,  of x rays scattered, as a function of scattering 
angle +, from the liquid helium sample, the neon gas sample, and the empty 
cassette. 

3. Neutron and x ray experimental results 
3.1. The static structure factor 
3.1.1. Measurements of S(Q). Experiments to determine S(Q) of liquid helium by 
means of x ray scattering have gone through three phases. The  earliest attempts 
were made by Keesom and Taconis (1938) and Reekie (1940) from the scattering of 
Cu Ka x rays. The  second phase, which gave a more detailed description of S(Q>, 
involved a number of investigations in the 1950s (Tweet 1954, Beaumont and 
Reekie 1955, Gordon et a1 1958) and included some measurements as a function of 
temperature, while the third phase consisted of the very precise and pretty work of 
Achter and Meyer (1969) and Hallock (1972). In  parallel with the x ray experiments, 
studies of neutron scattering were begun at Chalk River by Hurst and Henshaw 
(1955). Subsequent measurements by Henshaw (1960a,b) investigated the tem- 
perature and pressure dependence of the neutron scattering. 

Figure 5 shows S(Q) as determined from both x ray and neutron scattering. 
The  general features of the results from the three sets of measurements shown are in 
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reasonably good agreement with one another although discrepancies do exist. The  
neutron scattering measurements of Henshaw (1960a) indicate that the height of the 
first diffraction peak near Q = 2.0 8-1 is closer to 1.5 than to the 1.33 quoted by 
Achter and Meyer and which is consistent with the earlier neutron measurement of 
Hurst and Henshaw. Henshaw did not comment on the discrepancy and the 
reasons for it are unknown. 

1.4- 

1.2- 

1.0- 

- i7Q/Zms (Feynman 1954) 

h 

Neutrons (Henshaw 1960) - 

x rays (Achter and Meyer 1969) 
- _---- x rays (Hallock 1972) 

x x r a y s  (Gordon et a/ 1957) - 

~ ' j " " ~ " ' ' ~ " ' -  
2 .0  3 ;O 4.0 5.0 

Q ( A - ' )  

Figure 5 .  The static structure factor, S(Q), determined by various measurements. 

I n  regions of significant discrepancy between the results of Henshaw and the 
most recent x ray results, the values of S( Q) as determined from integrating over all 
energy transfers in the inelastic neutron scattering experiments (Cowley and Woods 
1971) agree more nearly with the x ray results. We believe the results of the x ray 
measurements are to be preferred over the neutron scattering results. 

3.1.2. The low temperature static structure factor. All measurements of S(Q) show 
quite distinctly the first diffraction maximum near Q = 2.0 8-1 but the details of a 
second maximum near Q = 4.5 8-1 are less well established. There is an indication 
of a second peak in the neutron measurements but the recent x ray measurements 
do not extend to large enough values of Q to be able to confirm this. 

The  more recent low temperature results (temperature dependence will be dis- 
cussed in § 3.1.4) at small, but finite, Q are consistent with the Feynman expression 
(2.12) 

ZQ 
Q -0 2 M c  lim S(Q) = - 

although deviations are evident at values of Q as low as 0.4 8-l. Miller et a1 (1962) 
from considerations of their knowledge at that time of S(Q),  w(Q) and Z(Q),  
predicted that S(Q) would exhibit a maximum, or at least a shoulder, for Q 2: 0.6 8 - I .  

Hallock's measurements do not show a maximum but they do indicate an inflection 
point in agreement with the spirit of this prediction. 

The  first maximum in S(Q) is lower than in most other liquids and subsidiary 
maxima are less distinct. This implies that the short range order is less well defined 
presumably on account of the large zero-point motion. 
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Through the use of the inverse of equation (2.3) it is possible to transform the 
measurements of S(Q) to obtain information about the spatial distribution of atoms. 
Hurst and Henshaw (1955) analysed their results in this way and deduced that, at 
low temperatures, the average atom in liquid helium has eight nearest neighbours at 
a mean distance of 3.7 A and a second shell of perhaps eleven neighbours at 5.25 A. 
These results are compared with calculations in $ 6.2 and reasonable, although by 
no means complete, agreement is found. 

3.1.3. Pressure dependence of S(Q). The  only measurements of the pressure 
dependence of S(Q) are the neutron scattering measurements of Henshaw (1960b). 
As the pressure is raised the height of the first maximum increases and the position 
moves to larger values of Q. For values of Q less than that of the maximum 
(2.0 A-l) S(Q) decreases with increasing pressure. Accurate determinations of the 
very small Q behaviour (Q-0.3 A-l) were not made. For Q > 3.0 A-l S(Q) was 
independent of pressure within the accuracy of the experiment. 

3.1.4. Temperature dependence of S(Q). Although the early measurements of S(Q) 
were carried out at a variety of different temperatures, systematic studies of the 
temperature dependence of S(Q) were made in only two cases: (i) the neutron 
scattering measurements of Henshaw (1960a), and (ii) the low Q x ray measure- 
ments of Hallock. 

Henshaw compared S(Q) at 2-29 K (just above the X point) with S(Q) at 1.06 K 
under normal vapour pressure in both cases. Additional measurements at 
T = 2.46 K were, within error, identical with those at 2.29 K. The  only dis- 
cernible difference between the curves at 2-29 K and 1.06 K is in the region of the 
first maximum where it is higher (by about 5%) and narrower at the higher 
temperature. 

Hallock’s measurements covered the ranges 0.133 A-1 < Q < 1.125 8-l and 
0.38 K <  TG4.60 K. In  general S(Q) was greater at the higher temperatures and 
the effects of temperature were most pronounced at small Q. At the three highest 
temperatures, 3.30 K, 4.00 K and 4.60 K, S(Q) showed a distinct minimum, the 
position of which shifted to larger Q as the temperature increased. The  low tem- 
perature low Q results are in accord with the expression (Feynman and Cohen 1956) 

the finite temperature extension of equation (2.12) where k, is Boltzmann’s constant. 

3.2. The dynamic structure factor and its moments 
3.2.1. Measurements of S(Q, U). As discussed in $2.1.1, neutron inelastic scattering 
may be used to determine the dynamic structure factor, S(Q,w). Some typical 
scattered neutron energy distributions, which are directly proportional to S(Q, U )  at 
fixed values of Q, are shown in figure 6 (Cowley and Woods 1971, Woods et a1 
1972). Other measurements which concentrate on certain specific aspects of 
S(Q,o) are discussed in $$3.4, 3.5 and 3.7. 

I n  accord with the discussion ($2.1.4) of equation (2.11) the observed distributions 
exhibit a well define.d sharp peak, which is broadened only by the instrumental 
resolution, and, at somewhat higher energies, a broader distribution. Both the 
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energy width and the intensity of the broad distribution are strong functions of Q. 
At values of Q > 3.5 8-l the intensity of the sharp peak is practically zero. 

Eo-€' (K) 
Figure 6. Some typical neutron distributions showing one-phonon and multiphonon 

contributions. The missing part of the Q N 3.41 distribution is similar to the Q = 4.5 
distribution with the peak at N 70 K. The points have been omitted for Q 1: 2.45 
because they would be indistinguishable in the figure. From Cowley and Woods (1971) 
and Woods et al (1972). 

3.2.2. The n = 0 moment. The  static structure factor, S(Q), is just the n = 0 
moment of S(Q, w) and is given by (2.2), that is 
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The measurements of S(Q, U) by Cowley and Woods (1971) when integrated 
over all energy transfers gave reasonable agreement with the results of the x ray 
scattering measurements (Achter and Meyer 1969, Hallock 1972). The  precision 
of the neutron experiments was not sufficiently high to determine whether or not 
there are any significant discrepancies between the x ray and neutron measurements. 

3.2.3. The n = 1 moment. The n = 1 moment is given by equation (2.8) and may be 
determined directly from appropriate integration of the distributions shown in 
figure 6, each point in a distribution being weighted by the corresponding energy 
transfer. The  resulting first moment, divided by hQ2/2M, is shown in figure 7 .  The  

Figure 7. The first moment of S(Q, U) in liquid helium at 1.1 K showing the contributions of 
one-phonon and multiphonon components. From Cowley and \hToods (1971). 

closeness of this ratio, H(Q) ,  to unity is satisfying and suggests that the major con- 
tributions to the scattering, particularly at high energy transfers, have been 
accounted for. 

The  division of H ( Q )  into contributions from the sharp one-phonon peak, HI(Q), 
and the broad multiphonon distribution, HII(Q), is also shown in figure 7. At those 
values of Q where there is no distinct separation between the two components 
(generally 0.7 < Q < 3-5 A-l) the one-phonon peak was estimated by insisting that 
its high energy side be symmetrical with its low energy side. This is not necessarily 
strictly correct particularly if phonon interactions are important enough to cause any 
broadening of the lines which might be masked by the multiphonon distributions. 
Nevertheless the division assumed likely gives a reasonable estimate of HI( Q )  
which may be interpreted as an effective Debye-Waller factor (Ambegaokar et a1 
1965). 

3.2.4. The n = - 1 moment. The n = - 1 moment, defined by equation (2.9)) was 
also determined from the results of Cowley and Woods and is shown in figure 8. 
Its determination is considerably more precise than that of any positive moment 
because the principal contribution comes from the low energy part of the dis- 
tributions which is dominated by the one-phonon scattering. GII( 8)  (the contribu- 
tion to G(Q) from the multiphonon scattering) exceeds G,(Q) only for Q > 2.3 A-l 
while HII(Q) is greater than HI(Q) for Q > 0-6 8-l. 
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I I I I I I 

Figure 8. The inverse first moment showing the contributions of one-phonon and multi- 
phonon components. From Cowley and Woods (1971). 

3.3. One-phonon excitations at T = 1.1 K and P-0  
3.3.1. Thephonon dispersion curve. The  position, in energy, of the sharp peaks in the 
scattered neutron distributions define the dispersion curve for the excitations in 
superfluid helium. Following the work of Palevsky et al (1957, 1958), who first 
demonstrated the existence of well defined excitations in helium, most of the 
essential features of the dispersion curve were measured by Yarnell et a1 (1959) and 
Henshaw and Woods (1961a). Both of these latter measurements were carried out 
at about 1.1 K and should be reasonably representative of the situation at T = 0, 
particularly since measurements to date have not shown any significant temperature 
dependence in the widths, positions or intensities of the corresponding neutron 
groups for T <  1-5 K. The  more recent results of Cowley and Woods (1971) have 
extended the results to higher and lower values of Q. These results are shown in 
figure 9 and agree very well with the previous measurements of Yarnell et a1 and 
Henshaw and Woods. The  region 1.5 < Q < 2.3 8-1 has recently been studied by 
Dietrich et a1 (197.2). 

The  form of the dispersion is very similar to that calculated by Feynman and 
Cohen (1956). There is an initial linear rise with a slope corresponding to the 
velocity of sound (equation (1.1)) followed by a maximum and the well known 
'roton' minimum (equation (1.3) ). However, the results demonstrate that the shape 
of the dispersion curve in the region of the minimum is not symmetric about p ,  and 
attempts to fit a parabola to the curve over any finite range of Q is unsatisfactory; as the 
fitted range of Q is increased the values of the derived parameters vary. The  value 
of A at the minimum is 8-67 & 0.04 K. On the other hand, Dietrich et al found that 
their results were reasonably well represented by a parabola within 0.25 8-1 of the 
minimum. Beyond the roton minimum the curve attains a slope approximately 
equal to its initial slope and then levels off at an energy of about 24. 

Bendt et a1 (1959) and Singh (1968) have calculated various thermodynamic 
properties of liquid helium, such as the entropy, specific heat, normal fluid density 
and velocity of sound, from the parameters of the dispersion curve obtained by 
Yarnell et al. Agreement between these calculations and experiment was generally 
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within a few per cent. More extensive comparisons over wide ranges of temperature 
and pressure are possible with more recent model parameters such as those deduced 
by Donnelly (1972). 

L 
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: : a  

W ’: 1 
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0 R C S € ~ =  0.01585 eV 
o TACS E’ = 0.00495 eV 
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Figure 9. The dispersion curve for He 11 for the elementary excitations at T = 1.1 K and 
PEO. Data obtained by rotating crystal spectrometer (RCS) and triple axis crystal 
spectrometer (TACS) as indicated. From Cowley and Woods (1971). 

The  intensities of the neutron groups arising from the scattering by single 
phonons are shown in figure 10. For Q < 0.3 8-l the results are consistent with a 
linear increase in intensity with Q in agreement with (2.13), which also describes 
the low Q behaviour for a harmonic solid, and with the x ray measurements of S(Q). 
For 0.3 < Q < 1.0 the one-phonon intensity is roughly constant and increases rapidly 
to a maximum at about 2.0 ,&-I, beyond which it exhibits a very rapid fall-off. For 
Q N 3.5 a-1 the intensity is about 1% of that at 2.0 a-l. An effective Debye-Waller 
factor for the one-phonon intensity is given by H,(Q), shown in figure 7, and is very 
similar to the Debye-Waller factor for a harmonic solid with 0, N 25 K except for 
the pronounced depression near Q = 1.0 8 - I .  This depression has also been 
observed for phonons in BCC solid helium (Osgood et a1 1972) as has been empha- 
sized by Werthamer (1972). The  explanation that the depression in HI(Q) for solid 
helium arises from interactions between one- and two-phonon scattering (Sears 
and Khanna 1972, Horner 1972, McMahon and Guyer 1973) may also be valid in 
the liquid. Such a view is strengthened by the results of measurements at higher 
pressures described in 0 3.4.1. 

3.3.2. Phonon dispersion at low Q. From equations (2.10) and (2.12) we see that, 
in the limit of low Q, 

E(Q)  = kiw(Q) = kQc. (3.2) 
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The  most commonly assumed form for a series expansion in powers of Q is 

u(Q) = cQ( 1 - yk2 Q2 - 8%' Q4) (3.3) 

which is also applicable to phonons in a harmonic solid. The  applicability of (3.3) 
to the description of the phonon dispersion in liquid helium near T = 0 has been 
questioned by several authors. Feenberg (1971) showed that a l/r6 interatomic 
potential has a Fourier transform, U( Q),  containing terms in I Q 13. I n  the Bogoliubov 
theory, $6.1.2, the expansion of w(Q) then contains a term proportional to Q4. 

Figure IO. Intensities of the one-phonon neutron groups at 1.1 K. Data from RCS and TACS 
as indicated. From Cowley and Woods (1971). 

Gould and Wong (1971), as described in $ 6.1.4, have shown that for the dilute Bose 
gas there are terms in the expansion of w(Q) of the form Q41n(l/Q). We must 
therefore treat equation (3.3) with care, but from the analysis of the neutron scat- 
tering results alone, it is not possible to determine that equation (3.3) is invalid. 
On the assumption that (3.3) is valid it is possible to deduce values for y and 6 from 
the neutron results. At the saturated vapour pressure the results (Woods and 
Cowley 1970) are y = (0 2 2) x g-4 ~ m - ~  s4. 

Specific heat measurements, however (Phillips et al 1970), suggest that y is large 
( N 1037 g-2 cm-2 s2) and negative while, as discussed in 0 4.3.1, the analysis of 
ultrasonic measurements indicates the presence of a region of anomalous dispersion 
for Q 5 0.1 A-I. The pressure dependence of the phonon dispersion for Q < 0.2 A-I 
at P = 24 atm is discussed in $53.4.1 and 4.3.1. 

In  the spirit of the expansions given by Pines and Woo (1970) the intensities of 
the one-phonon neutron groups may be expressed as 

g-2 cm-2 s2 and 6 = (2.4 5 0.3) x 

Z(Q) = -( 6 9  I-Z2Q2-Z4Q 4 . . . ) .  
2Mc (3.4) 
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The experimental one-phonon intensities of Cowley and Woods are reasonably well 
fitted for Q 5 1.0 if 2, = 1.5 & 0.2 A2 and 2, = - 0.9 i: 0-2 -A4, For Q > 0.3 8-l 
the one-phonon intensities diverge from the measurements of S(Q) (Hallock 1972) 
indicating that neutron scattering by more than one phonon occurs with significant 
probability even at these low wave vectors. This scattering will be discussed in 
more detail in $3.5.1. 

3.3.3. Phonon dispersion at high Q. The dispersion curve shown in figure 9 exhibits 
a plateau for Q > 2.5 8-l at an energy N 2A. In  this region the one-phonon intensities 
decrease rapidly with Q (figure lo), thus making accurate determination of the 
energies and intensities difficult. 

The  behaviour of the large wave vector phonons was first discussed by 
Pitaevskii (1959) who showed that their decay into pairs of phonons may occur if 
either the phonon group velocity exceeds the velocity of sound or if the phonon 
energy exceeds 2A. Phonon stability has also been discussed by Jackson and 
Feenberg (1962). 

I n  the former case the dispersion relation is continuous through a critical wave 
vector, Qc, and the attentuation increases beyond Qc. In  the latter case the energy 
approaches 2A exponentially, but the dispersion curve then ends abruptly at Qc. 
Figure 9 shows that the velocity reaches a maximum at Q = 2.27 kl, which is 
almost exactly equal to the velocity of sound and hence very nearly satisfies the 
condition for the first case. At larger wave vectors the velocity reduces and the 
energy approaches 2A. There is some indication that the observed energy is slightly 
greater than 2A for Q > 2.8 A-1 although the accuracy in this region is not high 
enough to be certain of this. Results at higher pressure, however ($3.4.1), suggest 
that this effect is more pronounced at P = 25.3 atm. Pitaevskii's theory, which 
also predicts the rapid decrease in the one-phonon intensity, appears to be qualita- 
tively correct although it is most probably inadequate in detail. 

More recently Ruvalds and Zawadowski (1970) have proposed that phonons 
near the roton minimum interact to form a two-roton bound state with a Q- 
independent dispersion relation and that the ' one-phonon' peaks observed in the 
neutron scattering for Q > 2.8 8-1 arise from scattering from this bound state. This 
intriguing concept will be discussed in more detail in $03.5.3, 5.3.3 and 6.3.2. 

3.4. Pressure and temperature dependence of the one-phonon scattering 
3.4.1. Pressure dependence. hleasurements of the phonon dispersion at P = 25.3 atm 
were made by Henshaw and Woods (1961b) and the results are shown in figure 11. 
I n  addition Dietrich et a1 (1972) studied the roton minimum region as a function of 
pressure and Svensson et a1 (1972) the dispersion of long wavelength phonons at 
P = 24 atm. 

At these higher pressures the low temperature sound velocity is about SOo/b 
higher than at the vapour pressure (Abraham et a1 1970) and this is reflected in the 
higher initial slope. At the maximum, near Q = 1.1 A-l, the phonon energy is 
about 10% higher, while at the roton minimum the energy is 7.0 K compared with 
8.67 K at P E  0. Beyond the minimum the curve has approximately the same slope 
at the two pressures and at 25 atm shows signs of levelling off at an energy which 
is greater than 2A. The  corresponding intensities of the one-phonon neutron 
groups reflect these energy changes: as expected from equation (2.8) the neutron 
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groups have lower intensities when the phonon energy is higher and vice versa 
(Svensson et a1 1972, Woods et a1 1973), although the detailed pressure dependence 
shows unexpected features. At P = 24 atm and Q = 1-13 A-l the phonon energy 
exceeds 2A, giving rise to the possibility of phonon decay into two rotons. There is, 

p 
w 

4p 
I 

Y #  I ,  I C  I 1  I I I I I I I I 
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

Momentum change ,Q tk') 
Figure 11. The  dispersion curve at T = 1.1 K and P = 25.3 atm. 
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Figure 12. Phonon velocities at P = 0, 24 and 25.3 atm. From Svensson et  al (1973). 

however, no indication in the neutron scattering that this threshold triggers a new 
decay mechanism. I t  is possible that the reason for this apparent stability is a 
pressure dependent effect which is also operative in the Pitaevskii regime (Brock- 
house et a1 1964). 

The  measurements of Svensson et a1 (1972), shown in figure 12, indicate that at 
24 atm the phonon energies for 0.2 8-1 < Q < 0.7 8-1 may be fitted to the first two 
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terms of (3.3) with y = (6.2 & 0.6) x g-2 cm-2s2, in contrast with the very small 
value of y at PN 0 but in better agreement with that derived from analysis of specific 
heat measurements (Phillips et al 1970). Ultrasonic measurements also suggest 
that y is positive at high pressure as discussed in $4.3.1. 

Dietrich et a1 (1972) have studied the pressure dependence of the neutron 
scattering in the vicinity of the roton minimum. The value of A at T2: 1.3 K 
derived from their experiments decreases approximately linearly with pressure for 
P> 5 atm and varies somewhat more rapidly, by a factor about 2 below this. Their 
value for (pia) aA/ap, where p is the density, is - 0.94 i 0.05 at the saturated vapour 
pressure. At 1 atm and 10 atm their results beyond the roton minimum show that 
the slope of the dispersion curve attains that of the velocity of sound at that pres- 
sure. I t  is then possible for the phonons to decay as discussed in $3.3.3. 

3.4.2. Temperature dependence 
Most of the experiments to study the temperature dependence of the one- 

phonon excitations were confined to the roton region of the dispersion curve 
(Larsson and Otnes 1959, Yarnell et a1 1959, Henshaw and Woods 1961a, Dietrich 

I 1 I I I I I 
-0.6 -0.4 -0.2 0 0.2 0.4 

r-r, (K) 
Figure 13. Temperature dependence of roton line widths (1 meV = 11.6 K). From Dietrich 

et al (1972). 

et a1 1972). I n  addition to the neutron scattering results, light (Raman) scattering 
measurements have also been used to determine the temperature dependence of 
rotons (Greytak and Yan 1971). Beca-use of their direct relevance to the neutron 
measurements, the results of these light scattering measurements will be included 
here rather than in $5.2.2. 

The  temperature dependence of the width of the neutron groups in the roton 
region is shown in figure 13. The width increases slowly at low temperature, very 
rapidly just below T,, and slowly above T,. There is possibly a discontinuity in the 
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slope at TA. I n  this region the full width at half maximum is about twice the mean 
energy transfer corresponding to the centre of the neutron group. The  concept of 
well defined excitations is, therefore, not really valid in this region of Q and T. 

The  various experimental determinations of the temperature dependence of the 
roton line width are reasonably consistent with one another, particularly when 
differences in analysis are taken into account. For example the resolution function, 
which had an energy width of about '2 K, was not removed from the results of 
Henshaw and Woods while Dietrich et a1 did allow for instrument resolution and 
also separated the annihilation and creation contributions to their observed line 
shapes near the X point. These differences account for most of the apparent dis- 
crepancies between the two sets of results. 

!- 
2 8 0 5  T T 

200 

0 I I I I I 
1.0 1.4 I .8 2.2 2.6 

Temperature (K) 
Figure 14. Phonon velocity as a function of temperature for Q N 0.38 A-1. The vertical bars 

correspond to peak widths and do not represent errors. From Woods (1965a). 

Dietrich et a1 show their results (figure 13) as a function of T -  T,(P) and 
suggest that they lie on a universal curve independent of pressure, although there is 
possibly some trend towards smaller widths near TA at higher pressure. 

These results, and those of the light scattering measurements, are reasonably 
consistent with the Landau and Khalatnikov (1949) expression which reduces to 

where rR is the contribution of roton-roton scattering to the viscosity. This 
expression agrees very well with the experimental results and supports the Landau- 
Khalatnikov model of strong hard core repulsive interactions between rotons as 
discussed in 5 5.3.4. 

I n  addition to these studies near the roton minimum there are measurements of 
the temperature dependence of long wavelength phonons (Woods 1965a, Cowley 
and Woods 1971) and of the dispersion curve over a wide range of Q at '2.1 K, just 
below 7'' (Cowley and Woods 1971). The  results in the long wavelength region 
disagree with the prediction by Hohenberg and Martin (1964) that the phonon 
velocity would be proportional to the superfluid density and, hence, be zero at the 
X point. The  measured phonon velocity (figure 14) shows only slight temperature 
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dependence up to about T = 3.0 K. At Q = 0.2 8-1 the widths of the neutron 
groups increase slowly with temperature but show no sign of a discontinuity at TA 
while at Q = 0.6 8-1 there is a strong temperature dependence in the vicinity of TA 
and the results are very similar to those at the roton minimum. Pines (1966a,b), by 
analogy with the theory of zero sound in Fermi liquids or of plasmons in an electron 
gas, suggested that the existence of phonons above TA results from the short range 
correlations in the liquid (see 5 6.1.4). 

At T = 2.1 K Cowley and Woods made measurements over a large range of Q. 
At large Q ( 2 2.4 8-1) the broadened one-phonon peak merged with the multi- 
phonon scattering so that the distinction between them was unobservable. The  
peak positions shown in figure 20 of Cowley and Woods are therefore strongly 
influenced by a Q-dependent and unknown contribution from the multiphonon 
scattering. I t  is thus not reasonable to treat these results as determinations of the 
energies of well defined excitations. Xear Q = 1.0 8-1 it was also not possible to 
observe a distinct one-phonon peak. Under optimum conditions the one-phonon 
intensities in this region are low (figure 10). As the temperature is raised the peaks 
broaden, thus reducing the peak height, and phonon-phonon interactions, which 
become more important as the temperature is raised, perhaps increase the inter- 
ference between the one-phonon and multiphonon components, thus reducing the 
peak height still more. On the other hand these results, which were obtained with a 
rotating crystal spectrometer, could be significantly improved. There is no reason 
to suppose that a peak could not be observed in this region of Q and T under better 
experimental conditions. 

3.5. Multiphonon scattering 
3.5.1. Description. In  addition to the sharp peaks in figure 6, which are attributed 
to one-phonon scattering, there is, on the high energy side of these peaks, intensity 
which rises to a broad maximum at about 25 K and extends to relatively large 
( N 80 K) energy transfers. For Q >  2.5 8-1 the scattering is dominated by this 
broad intensity, the mean position (in energy) of which rises rapidly with Q. This 
region is discussed in more detail in 0 3.6.1. 

Figure 15 summarizes the results for 0.3 8-l< Q < 4.0 8-l. The  shaded region 
corresponds to the energy transfer range between the upper and lower half-height 
positions on these broad distributions. These distributions are not symmetrical, 
often exhibit structure and have long tails. There is no justification for assuming 
that they correspond to a second branch of well defined excitations. The  width of 
the distribution varies with wave vector mainly through the Q dependence of the 
energy corresponding to the upper half-height position. This position extrapolates 
to a value which is almost equal to that of the lower half-height, rises to a maximum 
near Q = 1.5 8-1 and exhibits a minimum near 2-2 8-l. 

The intensity of the broad distribution at Q = 0.3 8-I is < 1% of that for one- 
phonon excitations near the roton minimum (Woods et al 1972a). I t  rises slowly 
and smoothly with Q and dominates the scattering at large Q. I t  is approximately 
equal to the one-phonon contribution near Q = 1.2 8-1, falls below it in the range 
1.2 Q < 2.2 A-l and exceeds it for Q > 2.2 i4-l. 

At small wave vector transfers this scattering may be expressed as 

sn(Q,w) = (G4Q4+G6Q6+ . - . ) f ( Q , w )  

where f ( Q ,  w )  is normalized so that JZm f ( Q ,  w )  dw = 1 and the first moment is 
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given by W + Q2 Analysis of the experimental results gives G, = 0.55 & 0.1 A4, 
G, = -0.4i-0.5 A6, w = 1 8 & 2  K and W~ = S i 2  KA2 (Cowley and Woods 1971). 

If the scattering satisfies the first moment sum rule, equation (2.8), then these 
coefficients are related to those of equations (3.3) and (3.4) by (Pines and Woo 1970) 

The  results given above clearly satisfy this result well within the experimental 
errors. 

t data Half-heigh 

Figure 15.  The energy against wave vector dependence of the scattering at intermediate Q 
at 1.1 K. From Cowley and Woods (1971). 

3.5.2. Pressure dependence of the multiphonon scattering. The  multiphonon scattering 
has been studied at 24 atm by Woods et a1 (1973) at several wave vector transfers 
in the range 0.5 A-1< Q < 2.05 8-l. The  results are similar to those at 0.7 atm, the 
major differences being more intensity in the multiphonon component relative to the 
one-phonon scattering at the lower values of Q, and evidence of intensity at energies 
below the one-phonon peak position. 

The  appearance of scattering intensity at energies below the one-phonon peak 
is particularly puzzling. As discussed in the following section, the ' multiphonon' 
scattering most likely arises from processes in which more than one phonon is excited 
in addition to interference between these and the one-phonon processes involving 
phonon decay. There is no obvious way in which a phonon can decay so as to give 
rise to scattering at lower energies unless, perhaps, second sound excitations are 
involved (see $6.1.4). Such an effect may well be enhanced at high pressure 
($5.3.2) where the ratio of specific heats, C,/C,, departs more from unity and there 
is thus more coupling between first and second sound (Vinen 1971). 

3.5.3, Interpretation. The  simplest, and hence most attractive, explanation of the 
broad component is in terms of scattering by more than one phonon. Such pro- 
cesses are well known in neutron scattering by harmonic crystals and were discussed 
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by Cohen and Feynman (1957) and by Miller et a1 (1962) for liquid helium. At 
small Q two-phonon processes dominate while at larger Q scattering by many 
phonons becomes important, as evidenced by the fact that the distributions extend 
to energy transfers (figure 6) which are much larger than the maximum energy of 
two phonons on the dispersion curve ( N 35 K). 

The intensity of the two-phonon process is expected to be proportional to the 
joint density of states, that is, the number of pairs of phonons which add up to 
w = w l + w z  at wave vector Q, to w i l w z l  in analogy with the corresponding term 
for harmonic crystals, and perhaps to other terms depending on the properties of 
the two excitations (the subscripts denote separate phonons involved in the process). 
In  calculations of the Raman scattering ($5.3.3) the intensity of the scattering near 
2A is peaked and very strong while that near 2A, (A, is the maximum energy near 
Q = 1.1 8-l) is much weaker and does not give rise to a maximum. I t  is therefore 
surprising that the neutron distributions show a peak at 19 K for Q N 0.3, close to 
2A, but at larger Q the peak is closer to 2A1. The  rise in the minimum in the upper 
half-height position beyond Q = 2.2 8-1 may partly arise from the fact that scatter- 
ing by two A, phonons is not possible for Q > 2.2 .&-I. 

The shape of the multiphonon distributions may also be influenced by inter- 
ference with the one-phonon processes. This interference has been invoked to 
explain the anomalously low intensity of the one-phonon peak near 1.1 3.3.1) 
and there will be an associated increase in the intensity of the multiphonon 
scattering. 

Iwamoto (1970), Iwamoto et a1 (1971)) Pitaevskii (1970) and Zawadowski et a1 
(1972) have considered the effect of roton-roton interactions on the shape of the 
scattering cross section. They all conclude that the interaction may have a signifi- 
cant effect on the shape. Zawadowski et al (1972) performed some detailed 
calculations in which the multiphonon scattering is observed entirely through the 
one-phonon part of the cross section. Their results which are discussed in detail in 
$6.3.3 are in qualitative agreement with the observed neutron scattering. 

Soda et a1 (1970) have used the two moment theorems (2.2) and (2.8) to discuss 
the scattering. They approximate SII(Q, w )  by SII(Q) S(w - wz(Q)) and then deduce 
Z(Q) and SII(Q) from the moment theorems and the observed one-phonon and 
multiphonon peak frequency. The results are similar to the experimental results for 
these quantities but differ in detail because of the oversimplified form assumed 
for SdQ, U). 

3.6. The independent particle region 
3.6.1. Experimental results. For Q 2 2-5 A-l the one-phonon intensity drops 
rapidly to near zero, S(Q) N 1, and the width and mean energy of the ‘multiphonon’ 
component are similar to that expected for scattering by a gas of free particles. This 
region is therefore better described by an independent particle model than by a 
phonon model. I t  also exists, of course, for solids but is rarely considered. 

Scattering in this region was observed by Woods (1965b) for Q up to 4.0 8-l 
and more extensive measurements by Cowley and Woods (1968, 1971) up to 9.0 8-l. 
Harling (1971) studied the scattering up to 20.3 8-1 and Martel, Svensson and 
Woods (unpublished) up to 12.0 8-I. No measurements were made at elevated 
pressures but some of the experiments studied the temperature dependence of the 
scattering. 
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The  observations at large Q are qualitatively described in terms of the impulse 
approximation in which 

(3.6) 
P 

where n(p )  is the number of particle having wave vector p and the delta function 
expresses conservation of energy and momentum. According to this expression the 
mean energy transfer is 7ii2 Q2/2M. The  term in Q . p  averages to zero and thus gives 
no contribution to the peak position but is responsible for a width of about Q .ji/M 
which increases linearly with Q. 

200 
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Figure 16. (a) Widths and (b)  energies -R2 Q2/2M of the peak of the scattering at 1.1 K. 

There are, however, very definite departures from the free particle or impulse 
approximation. In  particular, the departures of the widths and energies of the peaks 
from their mean values exhibit oscillations as a function of Q as shown in figure 16. 
These oscillations were observed also at T = 4.2 K and hence are not characteristic 
of the superfluid only. (The positions in energy of the peaks are taken to be the mean 
of the energies corresponding to half the maximum intensity on each side of the 
peak.) T h e  oscillations in the width, at least, persist to 12.0 8-1 but were not 
observed by Harling in experiments extending to 20-3 8-I. Except at the largest 
scattering angles the width of Harling's distributions were dominated by instru- 
mental resolution and there is, therefore, no reason to suppose that there is any 
disagreement between the two experiments. 

The  widths of the distributions were measured as a function of temperature for 
fixed angles of scattering corresponding to 5.1 8-1 (Cowley and Woods) and 
14.3 8-1 (Harling). Both results (figure 17) show little temperature dependence 
above the Xpoint and a much stronger dependence below. The  results indicate 
that, at 5.1 the most rapid variation occurs between 2.0 K and the X point. 
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All of the measured distributions are smooth and are not readily decomposed 
into two distinct peaks. The  statistical errors are such that it is difficult to tell if 
there is any asymmetry in the peaks at the higher values of Q although it is apparent 
for distributions at lower Q. The  deviations of the mean energy from the free- 
particle value coupled with the necessity to satisfy the first moment theorem, (2.8), 
suggest, however, that some asymmetry must exist at least out to 9.0 kl. 
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Figure 17. Temperature dependence of the width of the peak a t  5 . 1  A-1 (Cowley and Woods) 
and at 14.3 A-1 (Hading). 

3.6.2. Occupation of ZeYo momentum state. One of the fundamental ideas under- 
lying the modern theory of liquid helium is that of macroscopic occupation of the 
zero momentum state. All of the superfluid helium cannot be in this state, however, 
because of the interaction between helium particles. This interaction leads to a 
depletion of the zero momentum state which is believed to be about 90?/,. Inspec- 
tion of (3.6) shows that if p = 0 the resultant neutron scattering distribution is still 
centred at E2Q2/2M but has zero width. Thus, a measure of the intensity of a 
component of the scattering, which is narrow relative to that of the Doppler 
broadened distribution on which it is superimposed, gives a measure of the ratio 
n(O)/N, the fractional number of particles in the zero momentum state. Miller 
et aZ(l962) recognized that, in principle, neutron scattering measurements at large 
Q could determine this ratio, but the specific proposal to determine n(O)/N by 
means of a neutron scattering experiment was first made by Hohenberg and Platzman 
(1966). 

This theory is in practice considerably oversimplified because it neglects 
the scattering of the helium atoms with one another, and also neglects any coherent 
scattering effects. The  absence, in the experimental results, of a sharp peak from 
scattering by the particles in the zero momentum state has stimulated the develop- 
ment of several theories largely based on the moments. 

Sears (1969, 1970) expressed the scattering function as a Gram-Charlier expan- 
sion in Hermite polynomials. For incoherent scattering the coefficients of this 
expansion may be obtained from the moments of the velocity distribution of the 
helium atoms in the ground state. Sears (1969) then showed that at large Q 
the leading term in the moments can be summed to give exactly the result of the 
impulse approximation (3 -6). Secondly, he considered coherent effects and showed 
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that at large Q the leading terms are identical with those of the incoherent scattering 
function. 

The  impulse approximation is therefore valid at sufficiently large Q, but we have 
less knowledge about how large is sufficiently large. Hohenberg and Platzman 
(1966) estimated Q > 25 A-1 for which it would be necessary to use neutrons with an 
energy of 1 eV. Sears (1971) suggested that 80 A-1 might be required, which since 
it would necessitate an incident energy for the neutrons of 8 eV makes the experi- 
ment very formidable. I t  seems likely therefore that the direct observation of a 
sharp peak well resolved from the Doppler broadened peak may not be feasible. 
Several attempts have therefore been made to deduce n(0)jN from the experimental 
results with the aid of plausible assumptions. 

Puff and Tenn (1970) developed a model in which the scattering is divided into 
a part from the condensate and another part from the atoms with p # 0. Both con- 
tributions were assumed to be of a gaussian form with the former having a width 
determined by the He-He scattering cross section. Harling (1971) fitted this model 
to his results and obtained n(0)jN = 0.088 i: 0.013 where the error, which results 
entirely from counting statistics, is a lower limit. More recently Gibbs and Harling 
(1973) have included coherent scattering effects in the model and by so doing 
eliminated the small 1% frequency shift used in Harling’s original analysis. 

Kerr et a1 (1970) developed a model similar to the shielded potential model 
described in $ 6.1.4. Their model introduced two arbitrary functions which they 
obtained from the zero-, first- and third-moment theorems, and further made use 
of the distribution of particles n(p)  calculated by McMillan (1965), $6.2. They 
conclude that n(O)/N= 0.06. 

Finally Gersch and Smith (1971) have used equation (3.6) directly with n ( p )  
as determined by McMillan (1965) and as modified by Reatto and Chester (1967), 
see $6.2. The  peak from the condensate was assumed to be broadened by the 
He-He scattering for which the cross section was taken to be twice as large as by 
Puff and Tenn (1970). They emphasize that the shape of S(Q, w) differs consider- 
ably from a gaussian due to the nongaussian shape of n(p) .  They find that Harling’s 
data is best described by n.(O)/N = 0.06. 

I n  the absence of a distinct peak, the best evidence for the existence of the 
condensate is probably contained in the temperature dependence of the widths of 
the distributions as a function of temperature (figure 17). The  variation above the 
X point is very slight, as expected, since the dominant contribution to the widths 
comes from the zero point motion. Below the X point the width decreases much 
more rapidly and, at 5.1 8-1 at least, shows little variation below 2.0 K. This is 
precisely the behaviour one would expect if the component reflecting the con- 
densate had a finite energy width but was significantly narrower than the Doppler 
broadened component and if the value of n(0)jN varied rapidly just below the 
h point. As pointed out by Puff and Tenn (1970) the temperature variation of the 
widths reflect changes in the average kinetic energy. This is undoubtedly correct 
and expresses the inter-relationship between various macroscopic phenomena near 
the X point. It does not, however, lead to a microscopic description of the observa- 
tion and is irrelevant to any explanation in terms of the condensate. 

Cowley and Woods (1971) deduced that n(0)jN = 0.17 f 0.10 on the assump- 
tions that the distribution of particles with nonzero momentum, both below and 
above the X point, was that given by McMillan (1965) and that the distribution 
of scattering from the particles in the condensate was of lorentzian form. The  
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neutron distributions were calculated for various values of ~~(0)jiV and for different 
widths of the lorentzian, and comparison of these curves with the observed ones 
suggested that n(0)jN was in the range 0.07 to 0.27. 

It is important to realize that all of these estimates for n(0)jN depend strongly 
on the model used to describe the scattering and on the assumed shapes for the 
various distributions. All estimates are therefore tentative and the quoted errors 
have little significance. 

3.6.3. Analysis of high Q results. Figure 16 illustrates that the high Q results 
consist of single peaks which are very nearly characteristic of scattering by a gas of 
free particles but, in addition, there are oscillations in shifts and widths. Sears 
(1970) extended his theory to account for these oscillations. He  proposed approxi- 
mate expressions for the first four moments of the coherent scattering function at 
large Q by considering the moments of the incoherent function and the high 
temperature limits of the coherent function. He  then used his results and 
McMillan’s (1965) calculation of n(p)  to calculate S(Q, U )  from the first five terms 
of the Gram-Charlier series. The  results show oscillations in the width and position 
similar to those observed experimentally but both the magnitude and phase of the 
calculated oscillations are in error. 

Fernandez and Gersch (1969) attributed this oscillatory behaviour to the effect 
of the hard core repulsion between helium atoms. In  their model the interaction 
was cut off abruptly at the edge of the hard core giving rise to spurious oscillations 
at large Q. The  real potential has no such singularity and hence their explanation 
of the oscillations is probably spurious. 

Kerr et al(l970) also obtained oscillations from their model but the discrepancy 
with experiment is rather larger than in the calculations of Sears (1970). It is 
interesting that the oscillations arise from coherent interference phenomena and are 
exhibited at large Q in these dynamical properties but not in the static structure 
factor. Calculations of S(Q, U )  at large Q on microscopic models by Sunakawa et al 
(1970) and by Jackson (1969) are described in $6.3.3. 

The  shift of the peak position from the free particle value suggests that if the 
first-moment theorem is correct, and there is no reason to doubt this, the peak 
must be asymmetrical with extra intensity on the high energy side and cannot, 
therefore, be exactly described by a gaussian or any other symmetrical function. 
This is reasonable in view of the result (quoted in Sears 1969) that the odd moments 
of the scattering about the recoil energy position, which will vanish for a sym- 
metrical distribution, depend on interatomic forces which are not zero except for a 
perfect gas. 

Harling (1971), Gibbs and Harling (1973) and Sears (1970) have made calcula- 
tions of the temperature variation of the average kinetic energy per atom from the 
neutron scattering results and conclude that they are consistent with values derived 
from thermodynamic data. 

4. Ultrasonic measurements 
4.1. Experimental techniques 

The propagation of ultrasonic waves in liquid helium has been studied by many 
workers ever since the pioneering work of Findlay et a1 (1938) and of Pellam and 
Squire (1947). The  basic principle behind most of the measurements is that an 
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ultrasonic wave is generated and then detected after it has traversed a known dis- 
tance in the liquid helium. The  transit time and the decay then give the velocity 
and attenuation of the wave in the helium. Despite the similarity in principle 
between the different experiments, a variety of different techniques have been 
devised to overcome the considerable difficulties which arise if the results are to be 
of the high precision needed to test current theoretical predictions. Of the recent 
measurements those of Barmatz and Rudnick (1968) near the X point and those of 
Abraham et a1 (1969) and Roach et aZ(1972b) at low temperatures are particularly 
detailed and extensive. 

Barmatz and Rudnick (1968) used two transducers in a cylindrical cavity con- 
taining liquid helium under carefully controlled conditions of temperature and 
pressure. Ultrasonic waves were generated by the drive transducer, and the signal 
from the pick-up transducer fed through an amplifier and phase shifter into a 
generator which produced the initial ultrasonic signal. By adjustment of the 
amplifier and phase shifter the system was made to resonate with a resonant mode 
of the cavity, which may then be followed as the temperature of the helium is varied. 
With this technique velocity changes could be measured with an accuracy of 
1 part in lo5, and by measuring the Q factor of the resonance the attenuation could 
be obtained with an absolute accuracy of about 15%. All of the measurements were 
obtained using an ultrasonic frequency of 22 kHz and a temperature stability of 
2 x K. 

In  the low temperature measurements of the group at the Argonne National 
Laboratory the helium was cooled either by adiabatic demagnetization (Abraham 
et a1 1969), or more recently with a 3He-4He dilution refrigerator (Roach et aZl970). 
In  many of their measurements two quartz transducers are placed in the liquid 
helium to generate and detect the ultrasonic waves. A continuously running 
oscillator may feed power either into the helium bath or into a line consisting of an 
attenuator and delay. The  switching is under the control of two RF switches. 
In  one technique the power is fed alternately into the two lines and the resulting 
pulses compared. Adjustment of the delay and attenuator to give the same signal 
from both lines then enabled the velocity and attenuation of the ultrasonic wave in 
the helium to be obtained. In  the other technique the two switches were activated 
nearly in phase with one another, and the attenuator and delay adjusted to give 
destructive interference between the two signals. Using these techniques the 
attenuation has been measured from 17 mK to 2.0 K with pressures between 0 and 
25 atm and with frequencies between 12 and 256 MHz. 

Recently this group has employed a modified technique to measure accurately 
the change in velocity with frequency at low temperatures. The  helium cell used is 
shown in figure 18 and the electrical system was modified to generate synchronized 
30 MHz and 90 MHz waves. The  ultrasonic waves are generated in the helium by 
the quartz transducer and then detected after reflection from the reflecting surface. 
The reflecting surface is carried on a quartz block which slides accurately under the 
influence of the helium in the pressurizing chamber. By moving the reflecting 
surface the path length of the ultrasonic waves may be varied, and hence any 
difference in the velocity between 30 MHz and 90 MHz observed with a fractional 
accuracy of 2 x 

Two other techniques have also been used to measure properties at higher 
frequencies. Woolf et al (1966) set up ultrasonic waves in liquid helium with fre- 
quencies of 556 and 723 MHz. The  resulting density fluctuations of the liquid 
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were used as a diffraction grating for an incident laser beam. The  angle of deflec- 
tion of the laser beam, and its width, provided a measure of the wavelength and 
attenuation of the ultrasonics. 

A_-Pressurizing helium line 

I CrJ 

I 

Pressurizing chamber 

Fused quartz V-block 

Quartz transducer 

&LRF coaxial line 

Figure 18. The cavity containing the liquid helium in the experiments of Roach et a1 (1972a). 

Anderson and Sabisky (1972) have used a thin film technique to measure the 
frequency at 20-60 GHz. The  ultrasonic waves were generated in SrF,, doped with 
paramagnetic T m ,  which had a helium film absorbed on a cleaved surface. Inter- 
ferometric techniques were used to determine the phase shift introduced by the 
helium film. The  phase shift was assumed to arise partly from the transit time of the 
ultrasonics in the film, and partly from a phase shift at the SrF, helium interface. 
Analysis of the results for different frequencies and film thicknesses enabled them 
to determine the velocity as a function of frequency at 1.38 K. 

4.2. Expeyimental results 
The  temperature dependence of the velocity of sound and the attenuation in 

liquid helium is shown schematically in figure 19. The  attenuation has two 
maxima; one at the h point and the other at about 0.8 K. The  velocity also has a 
slight maximum at 0.8 K, but a minimum at the h point before increasing to a 
maximum at about 2.5 K. 

A detailed study of the behaviour of both the attenuation and velocity near the 
h point was reported by Barmatz and Rudnick (1968). In  figures 20 and 21 are 
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Figure 19. The temperature dependence of the ultrasonic attenuation and velocity at 2 MHz 
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shown some of their results. Both the change in the velocity and the peak in the 
attenuation are assumed to arise from the fluctuations occurring near the h point. 
Pippard (1951) suggested that the attenuation above the h point arises because there 
are small inclusions of He 11 in the He I. These inclusions become larger and more 
numerous as the h point is approached, and consequently more effective at scatter- 
ing the sound waves. Landau and Khalatinikov (1954) developed the theory by 
use of the mean field or Landau (1937) theory of phase transitions. The  experi- 
mental results are only qualitatively described by this theory since it fails to include 
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Figure 21. Temperature dependence of the attenuation at 22 kHz with the background 
attenuation corrected. (1 neper = 8.686 dB.) The temperature in the specific heat 
analysis was determined using a constant heat input and calculating the temperature 
from the known specific heat. From Barmatz and Rudnick (1968). 

the effects of the short range correlations. More recently the dynamical scaling 
theory of phase transitions has been applied to this problem by Ferrell et a1 (1967) 
and by Swift and Kadanoff (1968). This theory gives better agreement with the 
measurements, but is still not entirely satisfactory. Since it is beyond the scope of 
this review to discuss critical phenomena in detail, we refer the interested reader 
to the original papers for a fuller description of both the experimental and 
theoretical results. 

The  peak in the velocity and attenuation at about 0.8 K has been studied by 
Chase (1953), Chase and Herlin (1955), Whitney (1956), Newel1 and Wilks (1956), 
Dransfeld et a1 (1958), Jeffers and Whitney (1965) and Waters et aZ(1967), but the 
most complete measurements have been reported by Abraham et aZ(l969) and by 
Roach et aZ (1972b). These latter two papers give their results both in pictorial 
and tabular form. Measurements have been made of both the frequency and tem- 
perature dependence of the attenuation at the saturated vapour pressure. T h e  
temperature dependence of the attenuation is shown in figure 22. At low tempera- 
tures the results show that the attenuation is nearly proportional to T4.  The  
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frequency dependence of the attenuation is shown in figure 23 for various tempera- 
tures. At low temperatures the attenuation increases approximately linearly with 
frequency; at intermediate temperatures ( N 1.0 K) the behaviour is complex, while 
at  higher temperatures the attenuation varies as the square of the frequency. 

t '  I ' / '  " 
/ i 

/ 
100 t / 

O ' I  

i 

i 1 

0.1 0.2 0.4 0.6 1.0 2.0 
Temperature (K )  

Figure 22. The temperature dependence of the attenuation for various frequencies at saturated 
vapour pressure. The data were taken from Abraham et a1 (1969) except that at 
2 MHz which are from Jeffers and Whitney (1965) and Chase and Herlin (1955). 
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Figure 23. The frequency dependence of the attenuation at saturated vapour pressure. The  
circles are from Abraham et a1 (1969) and the crosses from Jeffers and Whitney (1965). 
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The pressure dependence of the attenuation is shown in figure 24. At low 
pressures the attenuation varies as T4, at higher pressures it has a similar behaviour 
at very low temperature but there is also a shoulder where the attenuation is almost 
linear in temperature, after which the attenuation rises more steeply again. As the 
pressure is increased the temperature at which the shoulder appears decreases, 
until at the highest pressures the attenuation is very small below 0.6 K. 
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Figure 24. The temperature dependence of the attenuation for various pressures at 45 MHz 
from Roach et al (19723). 

The  behaviour of the temperature dependence of the velocity at low tempera- 
tures is shown in figure 25. Initially the velocity increases with increasing tempera- 
ture, in a manner which is not very dependent upon frequency, and then decreases. 
The  pressure dependence of the velocity, Gruneisen constant and density at 
0.45 K was obtained by Abraham et aZ(1970), and the results are shown in figure 26. 
The  velocity and density increase with increasing pressure, but the Gruneisen 
constant decreases. 

More recently Roach et a1 (1972a) have measured the frequency dependence 
of the velocity in liquid helium below 60 mK, with improved accuracy. If the dis- 
persion relation at that temperature is written as 

then they find 

In  contrast the measurement of Anderson and Sabisky (1972) at higher fre- 
quencies, 30 GHz instead of 30 MHz, and at higher temperatures, 1.38 K, gave 
0 1 ~  = 0.275 0-030 A. I t  is at present unknown whether this difference results from 
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2.2 

the very different conditions of temperature and frequency in the two experi- 
ments, or whether Anderson and Sabisky's technique using thin films does not give 
results which are representative of the properties of the bulk material. Certainly 
the results of Roach et aZ(1972a) are more in accord with theoretical expectations. 
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Figure 25. The temperature dependence of the velocity of sound at various frequencies at 

saturated vapour pressure. The results at 1 and 11.9 MHz are from Whitney and Chase 
(1967) and the others from Abraham et  a1 (1969). 
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Figure 26. The pressure dependence of the velocity, c,  density, p - po, and Gruneisen constant, 
U = (p ic)  (dcldp), at 0.45 K. From Abraham e t  a1 (1970). 
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4.3. Theoretical analysis 
I n  this section we discuss the origin and theory of the peak in the ultrasonic 

attenuation at about 0.8 K. At very low temperatures the excitations in liquid 
helium have a lifetime, r ,  which is very long, in fact sufficiently long that the 
frequency of an ultrasonic wave, w, is such that wr & 1. Under these conditions the 
ultrasonic wave propagates in an almost collisionless manner, only occasionally 
scattering off a thermal excitation. At higher temperatures the lifetimes of 
the excitations become much shorter so that wr < 1 for ultrasonic frequencies. The  
ultrasonic wave then propagates thermodynamically with many collisions of the 
excitations within each period of the ultrasonic wave. The  peak in the attenuation 
arises when W T  = 1, and the ultrasonic wave is then strongly scattered by the therm- 
ally excited excitations. This transition from collisionless to thermodynamic 
behaviour is a testing ground for theories about the establishment of thermo- 
dynamic equilibrium and thus, in liquid helium, has attracted a great deal of 
experimental and theoretical work. Initially it was hoped that the theory would be 
much simpler than for solids; there is one isotropic branch of the dispersion relation 
instead of three anisotropic branches, but, as we shall see later, liquid helium has 
proved to have its own peculiar difficulties. In  the first part of this section we shall 
describe the theories developed for T < 0.6 K, where the rotons do not play a role. 
I n  the second part we describe the theory needed to include the effects of rotons. 

4.3.1. Attenuation below 0.6 K. Below 0-6 K the ultrasonic attenuation arises 
entirely from the collisions between the ultrasonic wave and thermally excited 
phonons, which are then scattered with conservation of energy and momentum. 
The  simplest process is that discussed by Pethick and ter Haar (1966) in which an 
ultrasonic wave with frequency w and wave vector q collides with a thermally 
excited phonon of wave vector q, and frequency wl, to give a phonon of wave vector 
qz and frequency w2. Conservation of energy and momentum then gives: 

w + w 1 = w z .  j 
In  the case of ultrasonic waves, w is at most about 100 MHz, whereas thermally 
excited phonons at 0.5 K have a frequency of 10 GHz. The  wave vector q and 
frequency w are therefore for the most part much less than q1 and wl. 

I n  this temperature region we expect that U T >  1, where r is the lifetime of the 
thermal phonons but it is reasonable to expect that the lifetime of the thermal 
phonons will play an important role. This lifetime relaxes the conservation of 
energy condition (4.1) by an extent determined by this lifetime. The  imaginary 
part of the self-energy of the ultrasonic phonon may now be calculated by second- 
order perturbation theory to give 

where rl and r2 are the imaginary parts of the self-energy F(ql, w,) and r(q2, w z )  
for the modes 1 and 2 respectively, or equivalently the inverse of their lifetimes, 
while the coupling coefficient is V(q,  ql, - qz), and n, and n2 are the Bose occupation 
numbers. 
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Since q1 and q2 are much larger than the ultrasonic wave vector, q, we may put 
rl = r2 and w1-w2 = -c,qcos 6, where 6 is the angle between q1 and q, and c1 
is the group velocity of the excitations with wave vector ql ;  c1 = (aw/aq)1,,,, 
Furthermore since w r  > 1 and T = l/Fl, while the velocity c1 is almost independent 
of wave vector, the largest contribution to equation (4.2) occurs, for w = cq when 
cos 6 = 1. q, q1 and q2 are all nearly parallel to one another. The  coefficients are 
then identical whether we use the hydrodynamic approach of Khalatnikov (1965) 
or the phonon approach of Wehner and Klein (1969a), and are given by 

V(q, q,, - q2) = jtia44'42C)1'7u 72vp + 1) 

where v is the volume of the liquid of density, p, and U is the Gruneisen constant, 
(pic) (dcldp). The  imaginary part of the self-energy, equation ( 2 4 ,  may be re- 
written as 

where we have used the fact that q1 and q2 are much larger than q and expanded 
n l - n 2  in terms of q. 

The  integration over 6 may be performed explicitly to give 

x [ tan-' (;,) - -tan- J4(;,c')) ] dq1. (4.3) 

In  the usual development of the analysis further approximations are made. T h e  
maximum of nl(nl f 1) q t  occurs when q1 = 3k, T/?Ic, and the term in curly brackets 
is replaced by its value for this particular q1 namely 

r = rl and F = c1 with q1 = 3k, Tlhc,. 

The  integral over dq, may then be performed if n, is replaced by its exponential 
approximation to give the attenuation, ci = r (w /co ,  w)/c, as 

where 
3kB4(u + 1)2 A =  27T7i3 c6 * 

(4.5) 

Wehner and Klein (1969b) and Abraham et aZ(l969) obtain a numerical factor 
of .rr3/60 (ie 0.51) which is slightly different from our 3 1 2 ~  (ie 0.48). This difference 
is not of great importance, but we are unable to reproduce their result. 

This result is expected to be most satisfactory when w 9 r. The  first term in the 
curly brackets of equation (4.4) then gives 7~12 but the second term depends upon 
the sign of co - .c. If the velocity decreases with increasing q, z < c,; then at large w 
this term cancels the first term. If there is no dispersion c = co the second term is 
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zero, while if there is anomalous dispersion, the term contributes xj2. In  short vie 
expect 

0 when < co 

01 = AwT4x 1 when c = co I 2 when c > co. 
I n  figure 22 we showed the temperature dependence of the attenuation at the 

saturated vapour pressure; the results at low temperatures clearly vary approxi- 
mately as T 4 .  I n  figure 23 we showed the frequency dependence of the attenuation 
at low temperatures; again the frequency dependence is in approximate agreement 

I , I J 
0 4 8 12 16 20 

Pressure ( a h )  

Figure 27. Attenuation a/2xwT4 as determined from the results of Roach et al (1972b) and 
figure 24 and compared with the calculated value of 2A from the data of Abraham et a1 
(1970) and figure 26. 

with the theory. In  figure 27 we show the pressure dependence of the coefficient 
2A as determined by the experimental results, and as determined by equation (4.5) 
using the pressure dependent p, c and U measurements given in figure26. The  
results are in excellent accord with theory up to 16 atm provided that we assume 
anomalous dispersion (Maris and Massey 1970), namely that C > c,,. 

Specific heat measurements of Phillips et al(  1970) also suggest that the dispersion 
is anomalous at low pressures and becomes normal at high pressures, as described in 
gg3.3.2 and 3.4.1. 

I n  the pressure dependent measurements shown in figure 24, the T 4  region 
occurred only at the lowest temperature, and there was a region in which the 
behaviour was almost linear in temperature. An explanation of these results was 
put forward by Jackle and Kehr (1971a). Their suggestion is that as 4,. varies in 
equation (4.3) the velocity c1 varies in such a way that at small q1 it is larger than 
co, but when q1 is greater than some wave vector qc, c1 becomes smaller than co. 
Since the attenuation for large w is zero when c1 < co, the integral in equation (4.3) 
should be cut off at qc and not at infinity. They suggest that when w > r  the 
attenuation is given by 

where 
= ~ A ~ T ~ F ( ~ , ) / F ( ~  (4.6) 

J O  
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In  the limit when k, T > cqc the attenuation becomes 

A RcqC3 
a=-- UT 36 k, 

A linear temperature dependence is shown in figure 24 for the shoulder at various 
frequencies. By fitting equation (4.6) to the experimental results Jackle and Kehr 
deduce that qc decreases as the pressure increases from 14 atm to 19 atm, as shown 
in figure 28. Below 14 atm no plateau occurs because qo is sufficiently large that the 
phonons with q1 > qo are not thermally excited, while at the highest pressure the 

IT 

Pressure (atm) 

Figure 28. The pressure dependence of 4c from Jackle and Kehr (1971a) and from the neutron 
data of Svensson et a1 (1972). 

attenuation below 0.6 K is negligible, suggesting that c1 is less than co for all therm- 
ally excited phonons. These conclusions are in excellent accord with the neutron 
scattering results of Svensson et al (1972) as described in $3.4.1 and figure 12. 
Clearly the wave vector at which the slope of the dispersion curve becomes equal to 
co decreases with increasing pressure and in figure 28 we show the values for qo 
obtained from neutron scattering results at 0 and 24 atm. These results were 
obtained from figure 12 by assuming that qo was one half the wave vector for which 
the phase velocity w(q)/q was equal to co. Despite this very crude approximation, 
the large errors on the neutron scattering measurements, and the uncertainties 
of the theory, the agreement between these values of qc is very good. We may con- 
clude therefore that the three-phonon scattering process is indeed responsible for 
the ultrasonic attenuation below 0.6 K, and that the dispersion curve initially shows 
anomalous dispersion, but that at small wave vectors, which decrease with increasing 
pressure, the phonon phase velocity decreases to a value below that for the ultra- 
sonic waves. 

Although this agreement is very satisfactory it is of a largely qualitative nature. 
When a quantitative comparison is attempted two further difficulties arise. These 
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are illustrated in figure 29 where we show the ultrasonic attenuation divided by 
2AwT4 for 36 MHz. I t  is seen that equation (4.4), curve A, necessarily predicts 
that ac/ZAwT4 is always less than unity whereas experiment shows that initially at 
least it increases above unity as T increases. 

I I , I 

I 1 I , I I 
0.2 0 *3 0.4 0.5 0.6 

Temperature (K) 

Figure 29. Theoretical and experimental results for the attenuation at 36 MHz. The experi- 
mental data are from Abraham et  aZ(l969) and A = 1.7 x CGS units and the curves 
are three theoretical predictions: curve A, bubble diagram with I?; curve B, bubble 
diagram with TI; curve C, lowest order vertex correction. From Wehner and Klein 
(1969b). 

There are two approximations made in the derivation of equation (4.4) which 
might be responsible for this discrepancy. Firstly, it was derived from equation 
(4.3) by replacing Fl by F. In  principle Fl may be calculated from equation (4.2) 
in the same manner as we obtained the ultrasonic attenuation but without assuming 
q is small compared with ql. The second approximation is more difficult to treat 
because it questions the validity of equation (4.2). The ultrasonic phonon is 
scattered by a thermal phonon, but as shown by equation (4.1), energy and 
momentum conservation imply that the energy is in most cases still flowing in the 
same direction. .It may, therefore, be scattered back into the ultrasonic wave. I n  
contrast equation (4.3) assumes this energy is entirely dissipated after the first 
collision. Because of this Khalatnikov and Chernikova (1966a) have suggested that 
rl in equation (4.3) should not be the width from the three-phonon process, 
equation (4.2), but only that part of the width which arises from wide angle scat- 
tering processes. Disatnik (1967) suggested a phenomenological form for Fl to 
take account of conservation of energy and momentum, and more recently Saslow 
(1972) has given a form for rl with which the theory at low frequency becomes 
identical with that obtained from hydrodynamics. 

The  perturbation theory which was used to derive equation (4.2) is invalid 
because the energy denominators are of order Fl, which is O( Vz) ,  so that for ultra- 
sonic frequencies the contribution of the whole term is O( Vz/V2)  namely O( l), and 
the perturbation theory is not convergent. Sham (1967) discussed this problem in 
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detail for crystals and showed that the correct behaviour could be obtained only if 
the infinite set of ladder diagrams shown in figure 30 were included in the self- 
energy. The  sum of this series is known as a vertex correction to the self-energy, 
and its inclusion is accomplished only by solving a complicated integral equation. 

Figure 30. Schematic diagrams of the self-energy calculated with (a) the simple three-phonon 
scattering, (b)  the first vertex correction and ( c )  the infinite series of terms. 

I I 1 I 
I IO 100 1000 

Frequency (MHz) 

Figure 31. The frequency dependence of the ultrasonic attenuation at 0.35 K. The solid line 
is the calculation of Maris (1972) and the experimental data are taken from: Waters 
e t  a1 (1967); + Abraham et a2 (1969). From Maris (1972). 

This problem was approached by Wehner and Klein (1969b) who assumed that 
the dispersion relation was linear 

4 Q )  = COQ 

and ended at the Debye cut-off of 1.09 8. They calculated the attenuation using 
equation (4.4), curve A of figure 29 and by calculating the rl explicitly and using 
equation (4.3). The  result, curve B of figure 29, shows that the change from F to 
rl makes a considerable difference to the results but that o(/2AwT4 is still decreasing 
with increasing T. Curve C of figure 29 was obtained by calculating the first term 
in the infinite series for the vertex corrections, as in figure 30(b). The  result is in 
excellent accord with the experimental results. 

Recently this work has been extended by Maris (1972) who has assumed that the 
dispersion relation is given by 

4 )  = cod1 -Y?) (4.7) 
with y = - 8 x 1037 8 - 2  s2, and has solved the integral equation for the vertex 
corrections selfconsistently. His results for the attenuation are shown in figure 31, 
and give very satisfactory agreement with experiment. 
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Unfortunately neither of these calculations are entirely convincing because of 
the assumed form of the dispersion relations. The  pressure dependence of the 
attenuation demonstrates that beyond some critical wave vector qo the velocity is 
less than co, and that this critical wave vector is comparable with those excited 
thermally. Consequently it is unreasonable to expect equation (4.6) to be a valid 
description of the dispersion relation over the region of interest. In  particular 
Klein and Wehner (1971) have used equation (4.3) for the attenuation and calculated 
rl from equations (4.6) and (4.2). They suggest that the value of A determined 
from the pressure dependent attenuation cannot be compared with theory as we 
have done in figure 27, because at the temperature and frequency of the nieasure- 
ments the second term in curly brackets in equation (4.3) is small and not -71.12. 

At present we must treat this result with caution, both because of the unsatisfactory 
form of the assumed dispersion relation, and because of the failure to include the 
vertex corrections which may well make rl much smaller. 

O/ 
I IO  100 1000 

Frequency IMHz) 

Figure 32. The theoretical frequency dependence of the velocity at 0.35 K compared with the 
data of Abraham et al (1969). From Maris (1972). 

The theory of the change in velocity with temperature and frequency is similar 
to that of the attenuation. The  result for the change in velocity equivalent to 
equation (4.4) is 

This result is in approximate agreement with the experimental results, figure 25, 
in that at low temperature and large w ,  the results are largely independent of w and 
vary approximately as TS. I n  detail, however, there are discrepancies; in particular 
the theory predicts that c increases with increasing w ,  whereas in practice, for 
frequencies greater that 12 MHz, it decreases. Cheung (1970) calculated the first- 
order vertex correction for the sound velocity using a linear dispersion relation and 
found this did not improve agreement with experiment, whereas Maris (1972), in 
his calculation in which he solved the integral equation and used the dispersion 
relation given by equation (4.7), obtained the curve shown in figure 32. Clearly the 
agreement is greatly improved. 
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In  summary therefore, considerable progress has been made in understanding 
the ultrasonic properties of liquid helium below 0.6 K.  The  simple three-phonon 
process gives a qualitative account of the experimental results if we have anomalous 
dispersion at low wave vectors, and a critical wave vector beyond which the velocity 
is less than co. It has been shown that vertex corrections make an important change 
in the results but we must await detailed calculations of these corrections, based on 
a more realistic dispersion relation, before the situation is entirely satisfactory. 

4.3.2. Attenuation above 0.6 K.  I n  view of all the difficulties encountered in the 
theory of the ultrasonic attenuation below 0.6 K, it is not surprising that far less 
work has been done on the theory above 0.6 K. Above 0.6 K there are two diffi- 
culties which arise. Firstly, the perturbation theory we used in the previous section 
is valid only when u.9 1, and this no longer holds above 0-6 K. It is then necessary 
either to treat the vertex corrections in detail, or to solve the appropriate Boltzmann 
equation. The  second difficulty is that below 0.6 K the theory could be developed 
ignoring the rotons, whereas above 0.6 K this is no longer adequate. Despite these 
difficulties Khalatnikov and Chernikova (1966b) have made immense progress in 
calculating the ultrasonic attenuation above 0.6 K. I n  this section we shall review 
their development in the light of our now more complete understanding of the low 
temperature properties and of the phonon-phonon scattering. 

Khalatnikov and Chernikova introduce density distribution functions for both 
the phonons and the rotons. The  kinetic equations for these distribution functions 
are Boltzmann equations describing the way these distributions vary in space and 
time. The  most difficult part of the development is in describing the three scattering 
processes in which the phonons are scattered by each other, and by the rotons, and 
the rotons are scattered by other rotons. 

The  roton-roton scattering (Khalatnikov 1965) is described by an interaction 
which is a delta function of the distance between a pair of rotons. When two rotons 
interact they are scattered with conservation of energy and momentum into two 
other rotons. The  roton-roton scattering time is then evaluated by integrating 
over all the rotons and the phase space of the scattered rotons, with the result 

l/.RR = 1.2 x 1013 T1” exp ( -  A / k ,  T )  s-l 
where A is the roton energy and the strength of the roton-roton interactions is 
determined from viscosity measurements. We discuss roton-roton scattering in 
more detail in 5 5.3.4. 

The  roton-phonon interaction is a scattering process whereby a phonon collides 
with a roton to give another roton of a different energy and wave vector. T h e  
interaction may be obtained from the pressure dependence of the roton energy, and 
leads to a phonon-roton scattering time of (Abraham et al 1969) 

1 / ~ ~ ~  = 1.3 x 1012 Tg’2 exp ( - A / k ,  T )  s-l. 

In  their work on phonon-phonon scattering Khalatnikov and Chernikova 
(196613) assumed that the dispersion relation was given by 

4 4 )  = c o 4 ( 1 - Y 4 2 )  
with y positive. If the width of the phonons is neglected the three-phonon process, 
which was discussed in the previous section, cannot occur, and it is necessary to 
consider more complex scattering. All of the scattering processes tend to have small 
energy denominators when all the phonons are travelling in the same direction. 
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These processes then establish equilibrium amongst the phonons with parallel wave 
vectors but do not distribute the energy in different directions. Khalatnikov and 
Chernikova discuss four- and five-phonon scattering processes which lead to three 
different relaxation times. A four-phonon scattering, in which two phonons scatter to 
give two other phonons travelling in the same direction, establishes thermodynamic 
equilibrium among the phonons travelling in one direction, but does not alter the 
total number of phonons. I t  gives rise to a scattering time of 

A five-phonon process, in which two phonons collide to give three phonons or 
three collide to give two, changes the number of phonons, and keeps the phonon 
number in equilibrium. It has a relaxation time of 

l / ~ g $  = 8 x lo7 T 9  s-l, 

In  both of these processes the largest contribution to the scattering arises when 
all the phonons have nearly parallel wave vectors. The  scattering of the energy 
away from that direction is a slower process, and the contribution to the wide-angle 
scattering from the four-phonon process is 

l /~g& = 3.0 x lo7 T 9  s-l. 

Since Khalatnikov and Chernikova used a dispersion relation with y > 0, 
whereas in fact, a t  least at low pressures, the dispersion is anomalous, all of these 
relaxation times are in error. With the present lack of knowledge about the form of 
the dispersion relation at small q, however, it is not possible to recalculate the 
necessary results. Nevertheless, with the anomalous dispersion at small q the three- 
phonon process is allowed, and will both establish equilibrium among the phonons 
travelling in one direction and also keep the phonon number in equilibrium. The  
relaxation times T ~ J  and are both probably shorter and more similar to one 
another than the results given above. Jackle and Kehr (1971b) have calculated the 
three-phonon contribution to l / ~ $ &  and l / ~ g &  as 7 x lo9 T5 s-l using anomalous 
dispersion. Likewise it is to be expected that there will be an additional contribu- 
tion to the wide-angle scattering rate. It is of interest that the wide-angle scattering 
rate deduced from heat conduction and heat pulse experiments by Jackle and Kehr 
(1971b) varies as T5,  and not as T 9  which is given by the theory with normal 
dispersion. 

Khalatnikov and Chernikova then observe that below 1.2 K, T!$, T ~ J  and rRR 
are less than T ~ ~ .  Both the phonon and roton distributions are therefore in thermo- 
dynamic equilibrium with a local space, direction and time dependent temperature. 
They solve the two coupled Boltzmann equations for these distributions with the 
aid of the equations of motion and continuity, to give the attenuation as 

rrz k B 4 w T 4  Im (@). 45E3 p2 c6 
c y =  

In  this expression 
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where 
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= (zp+zR) / (zp+zR-2)  

p = 3kB T / p 2  

2, = 1 - l / iw& 
and 

Z R  = 1 - l/iWTpR 

while p is the effective mass of the rotons. 
This formula looks and is very complicated, but in the limit as W T ~ A <  1, a is 

proportional to w2 whereas at high frequencies, cy. is proportional to w. This is 
borne out by experiment as shown in figure 23. 

At low temperatures TPR 9 T& and equation (4.8) reduces to equation (4.4) with 
the omission of the second term, and the replacement of F by l/@&. The  omission 
arises because equation (4.9) was calculated neglecting the dispersion in the velocity, 
which can be easily included. The replacement of P by l/&, the wide-angle 
relaxation time, arises because the Boltzmann equation approach includes the effect 
of the vertex corrections, at least approximately, as discussed in $4.3.1. 

Khalatnikov and Chernikova suggest that, above 0.9 K T ~ ~ < T ~ &  so that 
equation (4.8) may again be simplified. Since the three-phonon scattering gives 
rise to an additional contribution to 1/Tg& this may not be an appropriate approxi- 
mation. Likewise, above 1.2 K they suggest that T ~ R < T ~ &  so that the phonon 
distribution in a given direction cannot reach equilibrium. They introduce a 
chemical potential for these phonons to allow for this, and deduce a new equation 
for a. The three-phonon scattering will reduce T$$!,, however, so that this situation 
may not occur in practice, in which case equation (4.8) may be a better approxima- 
tion throughout the whole temperature region than the use of Khalatnikov and 
Chernikova's results above 1.2 K. 

I n  summary the theory of the ultrasonic properties of liquid helium above 0.6 K 
is a very complicated subject. Khalatnikov and Chernikova have, however, been 
successful in developing an exceedingly detailed theory, but the forms they have 
used for the phonon-phonon scattering and the roton-roton scattering ($ 5.3.4) are 
probably inadequate in the light of recent developments. There is a definite need 
for this part of the theory to be reworked and a detailed comparison made with the 
available experimental results. 

5. Light scattering measurements 
5.1. Experimental techniques 

The principle behind the light scattering measurements is very similar to that 
of the neutron scattering measurements described in $ 2  and is illustrated in figure 
33. A beam of monochromatic light with wave vector, k,, frequency, wo and plane 
of polarization, E,, is incident upon the liquid helium and scattered to produce a 
beam of wave vector, k,, frequency, us, and polarization, E,. Conservation of wave 
vector and energy then gives the wave vector transfer and frequency transfer through 
the equations 

ko-k, = Q 
wg - ws = w. 
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Since the wave vector of the light used in these experiments is typically about 
8-l, it is only possible to satisfy equations (5.1) for the creation of single 

excitations if the excitations are phonons. I n  liquid helium the frequencies of these 
phonons are about 700 MHz and the scattering is known as Brillouin scattering. 
Alternatively the equations may be satisfied if the scattering occurs by the 
creation of two or more excitations in the helium. Since these excitations will 
usually have a wave vector considerably larger than 10-3L\-1, the wave vector 
transfer in these experiments may be taken as zero. This latter type of scattering 
is known as Raman scattering. 

I' 

Figure 33. A schematic diagram showing a Raman scattering experiment in which the beam 
is incident along x, scattered along y and both electric vectors are polarized along z. 
This arrangement is denoted configuration (zz). 

Both of these two types of scattering have been studied experimentally by a 
group at M I T  (Greytak and Yan 1969, 1971, Greytak et aZ 1970) and by a group 
at RRE, Malvern and the University of Birmingham (Pike et a1 1970, Pike and 
Vaughan 1971). Both of these groups have used essentially the same techniques. 
The  monochromatic incident light was obtained from an argon ion laser and the 
scattered light was collected in an angular range of about 0.05 sr at 90" scattering. 
Two different approaches were used to detect the frequency change of the scattered 
light. For the Raman scattering measurements both groups have used a double 
grating spectrometer, while for the Brillouin scattering measurements and some 
high resolution measurements of the Raman scattering, a scanning Fabry-PCrot 
etalon has been used. The  interferometric technique has the advantage of much 
greater accuracy, but the disadvantage that the different orders are all superposed. 
This difficulty does not occur with the grating spectrometer. Finally, the light is 
detected by a cooled photomultiplier with a dark count of as low as one count 
per second. 

Considerable difficulty is experienced with scattered light, and the cell con- 
taining the liquid helium is carefully constructed to minimize the problem. 
Absorption of the laser power at dust particles may produce local boiling and hence 
scattering. This is reduced in the M I T  experiments by filling the cell through a 
superfluid leak, and in the RRE experiments by pressurization to 1.45 atm and the 
use of low laser powers. 

Optical techniques have also been used to detect the generation of first sound 
and second sound in liquid helium. The  former experiments by Woolf et aZ(1966) 
were described in $4.1. The  first sound was generated by ultrasonics and 
diffraction of a laser beam from the density fluctuations gave the velocity and 
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attenuation of the sound wave. A similar approach was used by Cunsolo et a1 (1971) 
to determine the velocity of second sound close to the h point. In  both of these 
experiments the results were in agreement with those obtained with more con- 
ventional techniques and will not be discussed further. 

5.2. Experimental results 
5.2.1. Brillouin scattering. The  Brillouin scattering from liquid helium has been 
reported by Pike et a1 (1970) and Pike (1972) and some typical spectra are shown 
in figure 34. The  peaks at finite frequency correspond to the scattering by the 
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Figure 34. The Brillouin scattering spectrum of liquid helium at three temperatures. The  
incident laser frequency is at the centre and dispersion is about 5.8  MHz/channel. The 
Brillouin lines overlap about l+  orders of the interferometer. After Pike (1972). 

sound waves and the centres of the peaks give the ultrasonic frequencies. In  
figure 35 we show the temperature dependence of these frequencies and the results 
are clearly in excellent accord with those obtained by ultrasonic techniques. 
Unfortunately the results are not of adequate precision to give detailed information 
comparable to that obtained with ultrasonic methods. The  temperature dependence 
of the intensity of the scattering by the Brillouin lines is approximately proportional 
to temperature. 

The  peak in the centre of figure 34 arises from the scattering by the temperature 
fluctuations in the liquid. It is known as the Rayleigh scattering and above the 
h point the scattering is quasi-elastic. The  intensity of this scattering has been 
measured relative to that of the Brillouin lines and the results are shown in figure 
36; the intensity of the Rayleigh component increases dramatically as the 
temperature is raised. 
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Below the X point the temperature fluctuations propagate with the second 
sound velocity. As shown, however, in figure 34 the intensity at low pressures is 
very low and these fluctuations have not as yet been observed. The  intensity, as 
described later, may be enhanced by performing the experiments at elevated 

t 
2.0 3.0 4.0 

Temperature (K) 

Figure 35.  The velocity of first sound at a pressure of 1.4 atm. The points are from Brillouin 
scattering measurements by Pike (1972) and the full line is taken from ultrasonic 
measurements. From Pike (1972). 

I 
2.0 3.0 4.0 

Temperature (K) 

Figure 36. The ratio of the intensity of the Rayleigh to the Brillouin scattering (points) 
compared with y -  1 (where y = C,/C,) derived from thermodynamic data (line) 
from Pike (1972). 

pressures and second sound has been observed in this way by Greytak (1972 
unpublished). Alternatively in a 3He-4He mixture the concentration fluctuations 
give rise to an enhancement of the second sound cross section (Gorkov and 
Pitaevskii 1958, Ganguly and Griffin 1968) and this has been observed by Palin 
et  aZ(l971). 
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5.2.2. Raman scattering. The  Raman scattering was first observed by Greytak 
and Yan (1969) and their results are shown in figure 37. At low temperatures there 
is a sharp peak at about 17 K above which there is a much smaller subsidiary 
maximum at 36 K and a long high frequency tail. Detailed measurements of the 
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Figure 37. 
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The Raman spectra of liquid helium at two temperatures. After Greytak and Yan 
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Figure 38. The temperature dependence of the two-roton peak in the Raman scattering from 
liquid helium. From Greytak and Yan (1969). 

temperature dependence of the sharp peak are shown in figure 38 and the intensity 
is seen to decrease rapidly as the temperature is raised. Above the hpoint the 
spectra, figure 39 (Pike and Vaughan 1971), have broad maxima at about 30 K. 
The  detailed shape of the sharp peak at low temperatures was studied by Greytak 
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Figure 40. The Raman spectrum of liquid helium at 1.2 K. The strong peak at zero energy 
transfer is the Brillouin scattering. The dotted curve is a theoretical fit based on a 
model with roton-roton interactions and the broken line a similar model without these 
interactions. From Greytak et a1 (1970). 

et aZ(1970) using interferometric techniques. Their results are shown in figure 40. 
The maximum in the spectrum was determined to be at 17.022 ? 0.027 K. 

The form of the high frequency part of the spectrum was studied by Pike and 
Vaughan (1971) with the results shown in figure 41. The results show the spectra 
at 1-15 atm and three different temperatures and are compared with the analogous 
spectra from 4He gas at 0.96 atm and 4.22 K. The results show that gaseous 4He at 
4.22 K gives an exponential spectrum, similar to that found in gaseous krypton 
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and argon by Gerstein et a1 (1970) and McTague and Birnbaum (1968) and with a 
characteristic width of 19 i- 3 I(. At 4.22 K the liquid has a similar exponential 
form for frequency transfers above 45 K with a characteristic width of 29 3 K. 
The slope of the line decreases as the temperature is decreased. 
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Figure 41. The Raman spectra of helium: curve A, gas at 4.22 K and 0.96 atm; curve B, 
liquid at 4.22 K and 1.15 atm; curve C, liquid at 3-31 K and 1-15 atm; curve D, liquid 
at 2.42 K and 1.15 atm. From Pike and Vaughan (1971). 

Table 1. The ratio of the intensities for Raman scattering in the configuration (ap)i  
Liquid at Liquid at 

Gas 4.2 K 1.3 K Theory 
(Pike and (Pike and (Greytak and s com- d com- 

Configurations Vaughan 1972) Vaughan 1972) Yan 1969) ponent ponent 

(ZX)/(ZZ) 0.75 f 0.16 0.66 f 0.09 0.9 f 0.2 0 0.75 

( Y Z ) / ( Z Z )  0.72 f 0.1 0.77 f 0.1 0 0.75 
(YZ +YX) i (ZZ  + ZX) 0.84 f 0.08 0 0.86 

(ZY)/(YX) 1.0 f 0.2 1.1 f 0.2 0.85 f 0-2 oj0 1.0 

j- 01 is the direction of Eo and /3 of E,; see figure 33. 

The polarization properties of the spectra have been measured for the liquid 
and gas at 4.2 K and for the liquid at 1.3 K. The  results using the geometry 
described by figure 33 are collected in table 1. The  spectra occur in all polarizations 
and, furthermore, the shape of the spectra does not change with the polarization. 

5.3. Theoretical analysis 
5.3.1. Interaction of light with the helium excitations. The spectrum of the light 
scattered by a system is dependent upon the interaction between the light and the 
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excitations and secondly on the properties of these excitations. In  this section we 
consider the first part of this problem and leave the second until SS5.3 .2  and 5 . 3 . 3 .  
The  interaction of light with liquid helium was discussed by Halley (1969); the 
electric field of the incident light polarizes a helium atom which then interacts 
with its neighbours so as to polarize them, and hence to give rise to scattering. 
Halley developed the theory by explicitly introducing the electronic coordinates 
required to describe the polarizability of the helium atoms. We shall not follow 
this approach but describe the more straightforward, but similar, approach taken 
by Stephen (1969). A similar theory has been given by Nakajima (1971). 

In  Stephen's theory the polarizability of the crystal is expressed in terms of the 
fluctuations in the atomic density. If p ( r )  is the atomic density at r and p, is the 
uniform density 

Since the excitations are most readily described in wave vector space we shall also 
require the Fourier transform of p(r )  which is written p ( q ) .  

The  polarization produced at any point within the liquid by the incident field, 
Eo(r) ,  assumed to vary with wave vector k,, is the product of the atomic polariz- 
ability, the atomic density and the field at that point within the liquid; 

d r )  = PO+ +(r)* 

P ( r )  = .p(r)E(r).  ( 5 . 2 )  
In the scattering experiment the scattered wave has a wave vector k,, which is 
radiated by the electric polarization wave in the helium with this wave vector. 

There are two components to the electric field, E ( r ) ;  the incident field, Eo(r) ,  
and the effective field E ' ( r )  produced by the dipole moments on all the atoms 
other than the one at r .  These fields will be produced by the fluctuating parts of 
the density, 6 p ( r ) ,  and since electromagnetic waves travel through helium much 
faster than density fluctuations we may calculate the field from these fluctuations 
in the static approximation 

EL(r) = E C EP(r-  r') 6 p ( r ' )  Ep(r')  dr' ( 5 . 3 )  
P .i: 

where E P ( r )  is the electric field produced in the a direction due to a dipole in the 
,B direction a distance r away. The  integral J,.. . .dr' is an integral over all the atoms 
other than the one at r .  

The lowest order solution to equation 5.3 is given by neglecting the fluctuating 
part of the electric field on the right hand side when equation 5 . 3  may be Fourier 
transformed to give 

EL(q + ko) = c f&> Ep(k0). (5.4) 
P 

The magnitude of a polarization wave of wave vector k,, produced by an incident 
electric field of wave vector, k,, is obtained from the polarizability which may be 
written as 

( 5 . 5 )  
1 

Pa8 = p;y +PLY p ( Q )  +N c qfw) p ( q >  p( - 4 + ... 
9 

where 
P$ = apo6,p when Q = 0 
PLY = o"6,p 

PtY2B)(Q) = ."forp(q)~ 
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The  light scattering cross section is given, for a frequency transfer w and an 
incident and scattered polarization given by the unit vectors p0  and ps, by (Born 
Huang 1954) 

where the fourth rank tensor is given by the correlation function 

4Y/3,s(4 = - J" (Pap(0) P;&t)> exp ( i d )  dt. 
277 -m 

The  Brillouin scattering is then determined by the tensor 

I$&J) = a2(P0.  P")" S ( Q ,  0) (5.6) 
where S(Q,w) is the same function as measured by neutron scattering techniques 
and described in $52 and 3. We are unaware of any published results which 
confirm the polarization dependence, although Greytak et a1 (1970) imply that the 
result is at least approximately satisfied. 

The  two-excitation scattering occurs from the third term in equation (5 .5)  and 
gives rise to a two-density correlation function 

where 

and we have neglected the wave vector transfer Q ,  compared with q and ql. The 
form of the correlation function depends on (aPy8) through the angular dependence 
of the f factors as will be more apparent when we discuss its form in detail in 

Since liquid helium is isotropic and laByS(w) is a fourth rank tensor with the 
same symmetry properties as the elastic constant tensor, there are only t u 0  
independent components. These are usually referred to as the s and d components 
and result from the s and d parts of the interaction t&(R). When an average over 
all the possible directions of the wave vectors q and q1 has been performed, the 
scattering separates into (Iwamoto 1970) 

0 5.3.3. 

and 

where the factors f and H are not dependent on the polarization vectors. 

the interaction potential, Kt(r ) .  
interacts with one at the origin and from classical electrostatics the field is 

The  functions f s (q )  andf,(q) may be calculated once we assume a model for 
This interaction describes how a dipole at r 
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Stephen (1969) then evaluated the Fourier transform of this function, and took 
account of the exclusion of the atom at Y from the integral in equation (5.3) by 
cutting off the transform when Y = a.  Since this interaction is entirely d-like it 
contributes only to fd(q) which is then 

In  figure 42 we show this function for a = 1.57 Lk 

I I I 

Figure 42. The form factor f ( q )  for Stephen’s model of the Raman scattering, for a = 1.57 W. 

Stephen’s theory then predicts that the two excitation scattering will be entirely 
d-like. I n  table 1 we list the experimental results for various polarization ratios and 
the predictions for s and d symmetries. Clearly the observed intensity is largely 
d-like although improved accuracy might show a small s-like component. This 
result is a very convincing test of Stephen’s theory and also possibly surprising in 
that a large part of the field E P ( r )  probably arises from nearest neighbour inter- 
actions, and this might well have a short range overlap interaction in addition to 
the classical electrostatic field. A short range overlap contribution would give rise 
to s symmetry scattering, and it would therefore be of considerable interest to 
measure this. 

5.3.2. Brillouin scattering. The  cross section for Brillouin scattering is dependent 
upon the Van Hove correlation function S ( Q , w )  as shown by equation (5.6). 
Since the wave vector Q is typically about low3 the scattering arises from the 
phonon part of the dispersion relation. The  experiments have so far been conducted 
above 1.0 K and so are in the hydrodynamic region and the theory is most 
appropriately described by a hydrodynamic model. Since we are not treating the 
two-fluid model in detail we shall describe the behaviour in this region only 
qualitatively. 

The  density fluctuations in a liquid are dependent upon changes in pressure 
and entropy 

Now the fluctuations in the pressure and temperature will, for He I,  be uncorrelated 
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and the magnitude of the fluctuations given by the fluctuation-dissipation theorem 
as 

while 

kB 
(m2) = (a TIES), 

The  intensity of the light scattered by the pressure fluctuations or sound waves is 

while that scattered by the entropy fluctuations, which are entirely damped by the 
thermal conductivity, is known as the Rayleigh scattering and is given by 

The  ratio of these intensities, as first shown by Landau and Placzek (1934) and 
derived in detail by Frenkel (1946), is given by 

(5.10) 

where y is the ratio of specific heats C,jC,. The  results shown in figure 37 are in 
excellent accord with this theory and give further support to Stephen's theory of 
the light scattering in liquid helium. If the scattering arose not only from density 
fluctuations, but also from explicit temperature fluctuations, the intensities and 
shapes would be quite different, as shown in the case of solids by Wehner and 
Klein (1972). 

Below the h transition the pressure and entropy fluctuations are coupled, and 
the entropy fluctuations propagate with the speed of second sound. The  theory 
must then be developed by use of the two-fluid hydrodynamic model, but, as shown 
by Vinen (1971), the ratio of the intensities above 1.3 K is still given to good 
accuracy by equation (5.10). I n  particular he shows from thermodynamic data that 
C,/C, differs from unity at high pressures and predicts the ratio IS/Ip for a series of 
pressures in H e n .  

Unfortunately Brillouin scattering measurements have not yet been conducted 
at lower temperature and at a variety of pressures with sufficient accuracy to 
determine the form of the velocity and attenuation in a frequency range different 
from that attainable by conventional ultrasonic measurements. Such measurements 
might well clarify the uncertainties described in $4 about the interpretation of the 
ultrasonic measurements. 

5.3.3. Raman scattering. The form of the Raman scattering is dependent upon the 
two-excitation correlation function defined by equation (5 -7). The  simplest form 
of this function assumes that there is no interaction between the excitations and 

Z<f(Q,O)f(-Q,O) f ' (Q,t)f+(--!Il , t))  
41 

= <dQ, 0) f'(% t ) i  <P( - !I, 0 )  P+( - Q, t)> 
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H(qql, w )  = 1 S(q, U ’ )  S( - q, w - U ’ )  dw’. (5.11) 
-53 

The low frequency part of the scattering is then dominated by the one-phonon 
part of S(q, w) ,  namely Z(q) S(w - w(q)) from equation (2.11) to give 

The  Raman scattering for the d-wave scattering is then 
WW,, = Z ( d 2  S(w - 2 4 q ) )  L,. 

6a4 ( l + ( p o * p ” ) 2 )  / M ( q )  S(w-Zw(q))dq 1077-2 3 &(U) = - (5.12) 

where 
M ( q )  = (Z(4 fd(q))2s  

The  two-excitation Raman scattering is therefore a modulation of the two- 
excitation density of states. In  particular near the roton minimum the excitation 
energies are given by equation (1.3) and if we neglect M ( q )  the remainder of the 
integral in equation (5.12) may be performed analytically to give the density of 
states for w close to 2 4  as 
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In  the experiments, figure 37, only one peak is observed instead of the three 
peaks shown in figure 43. In  large part this is because of the effect of the coefficient 
modifying the form of the scattering. In  figure 44 we show a calculation of the 
Raman spectrum using equation (5.12) (Cowley 1972). The  calculation includes the 
effect of the resolution function appropriate to the experiments of figures 38 and 40 
and has been normalized to give the same peak height as both experiments. The  
agreement between experiment and theory is clearly quite reasonable especially 
for the lower resolution experiment shown in part (a )  of the figure; the high 
frequency peaks in figure 43 are almost wholly eliminated by the function M(q) .  

I I I I 

' 5 -  Experiment 

I6 18 17 

Figure 44. The Raman scattering from liquid helium as measured experimentally (full line) 
by (a)  Greytak and Yan (1969) and by (b) Greytak et a1 (1970), and as calculated from 
equation (5.1 2) neglecting roton-roton interactions (broken lines). The  dotted and 
chain lines are calculated with roton-roton interactions assuming g, constant and V, 
constant respectively. In all of the calculations rH. = 0.15 K and allowance has been 
made for the instrumental resolution function. 

At the higher frequencies there are appreciable discrepancies between the theory 
and experiment but these may well result from the multiphonon part of S(Q,  w )  
which has not been included in these calculations. 

The  effect of the roton lifetime may be included in these calculations by 
replacing the delta function in equation (5.12) by a lorentzian with half-width rR, 
the inverse lifetime of the rotons. This leads to a decrease in the peak height as 
rR increases and by fitting rR to the results of figure 38 Greytak et a l ( l971)  were 
able to obtain r R  as a function of temperature, as shown in figure 45. 

Despite the considerable success of the theory as shown by figure 44(a), it is 
inconsistent with the results of Greytak et al (1970) as shown in figures 40 and 
44(b). In  both Greytak's calculations and ours the peak of the spectrum for non- 
interacting excitations occurs at 17.65 K, whereas his observed maximum is at 
17.022 K. This discrepancy is apparently well outside the errors in the frequency 
measurements both of his experiment and of the basic neutron scattering results 
which we have used in the calculations ( 2 4  = 17*34+ 0.08 K). Greytak et al 
interpret this discrepancy as evidence for a two-roton bound state. 

Ruvalds and Zawadowski (1970) initially introduced attractive roton-roton 
interactions in order to account for the suppression of the high frequency peaks 
in the density of states, figure 43, in the observed Raman scattering. As a result 
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of this they predicted that a two-roton bound state might occur with an energy 
below 2A. As we have seen the suppression of the peaks in the Raman scattering 
results largely from the M ( q )  function but nevertheless Ruvalds and Zawadowski's 
consequent prediction of a two-roton bound state provides a mechanism to under- 
stand the presence of Raman scattering below 2A. The theory of this effect is 
discussed in detail by Iwamoto (1970) and by Zawadowski et a1 (1972), and we will 
quote their important results. 

I .2  I .4 I *6 1.8 2.0 
Temperature ( K )  

Figure 45. The roton full width at half-height, 2 r ~ ,  as a function of temperature from Greytak 
and Yan (1971). The  full line is the best fit obtained with the theory of Landau and 
Khalatnikov (1949). See also figure 13. 

The  Raman scattering produces pairs of density fluctuations which may interact 
with one another. If the light produces a pair of fluctuations with wave vector q 
they will be scattered to a wave vector q1 by the interaction given by 

Since the two-excitation Raman scattering has a definite symmetry there will be 
definite angular correlations occurring both in the incident and scattered waves. 
The  interaction depends therefore on the magnitude of the wave vectors and the 
symmetry, s- or d-like, of the Raman scattering. The  interaction may therefore be 
rewritten as 

with the appropriate interaction to be chosen for the different symmetries of the 
Raman scattering. 

Furthermore the problem is intractable if the interactions are dependent on 
both q and q1 unless the form is separable V(qq,)  = V'(q)  V'(q,). The Raman 
scattering is then given by equation (5.9) but with 

V(% Q1) = V S ( Q ,  Q1) + Vd(q, q1) 

Hd(qql, 
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where the function F ( q )  is 

F ( q )  = lim (z(q)>2 
E+O+ w - ie - 2w( q)  

The importance of equation (5.13) is that it permits scattering to occur when 
I 

1 = $ c V/(q2)2F(q2). 
42 

The two-excitation density of states has a singularity when w = 2A, as shown in 
figure 43. In  a similar manner, for w < 2A and w --f 2A, an integral over qz gives 

Since the dominant excitations in this sum are all rotons we may approximate 
V’(q )2  as V,. A two-roton bound state is then obtained if V, is negative at a fre- 
quency given by 

(5.14) 

This result differs from that of Ruvalds and Zawadowski (1970) and Zawadowski 
et a1 (1972) by the presence of 2,. This arises because we have assumed that the 
interactions occur between density fluctuations whereas they have assumed inter- 
actions between rotons; their g, = ZgV,. In  numerical calculations we need to 
know how V’(q, ql) varies with q and ql, and we have made two approximations. 
One is identical to the theory of Ruvalds and Zawadowski (1970) and 
V(q ,  ql) = g,/Z(q) Z(ql) and in the other V(q ,  q l )  has been taken as a constant. 

The  roton-roton interactions not only give rise to a bound state, but also 
drastically modify the form of the two-excitation band. This is illustrated in figure 
46(b) where the Raman spectra are calculated with a roton-roton interaction to 
give the observed frequency of the bound state. The  observed spectra, which are 
then convolutions of these spectra with the experimental resolution, are shown in 
figure 44. The  comparison with the Greytak and Yan experiment, figure 44(a), 
shows that the model neglecting roton-roton interactions is most satisfactory. The  
frequency of the peak and the intensity at w 2: 20 K are both more satisfactory than 
for the interacting models. The  comparison with the high resolution experiments, 
shown in figure 44(b), shows that there is an error in the peak frequency for the 
noninteracting model, while those including interactions fall significantly below the 
observed curves for w about 18 K. These calculations are essentially the same as 
those of Greytak et al (1970) shown in figure 40 except they include the M ( q )  
factor. 

Greytak and Yan (1969) and Greytak et a1 (1970) report measurements of the 
spectra with three different resolution functions which give peak frequencies which 
increase as the resolution width increases as shown in table 2. This effect also 
arises in the calculation performed with noninteracting excitations because the 
spectrum, figure 46(a), is asymmetric about 2A. On the other hand when the 
interactions are introduced with sufficient strength to account for the results shown 
in figure 44(b), the spectrum is very sharp in frequency, figure 46(b), and the peak 
frequency almost independent of the resolution function, table 2. The  theory and 
the experimental results are therefore inconsistent; the peak frequency occurring 
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below 24 in figure 46(6) cannot be understood simultaneously with the resolution 
dependence of the peak frequency shown in table 1. Pike and Vaughan (1971), 
figure 39, also measured the spectrum with somewhat worse resolution than 
Greytak et a1 and obtained an even larger peak frequency. 

I /-- 
. I  

10 20 30 
Frequency, o (K )  

Figure 46. The  Raman scattering calculated (a)  with no interactions, ( b )  with attractive inter- 
actions of a strength to produce the measured bound state energy, and (c) with repulsive 
interactions ten times larger in magnitude. The solid curves assume g, is a constant 
after Ruvalds and Zawadowski (1970) and the broken curve that V(44,) is a constant. 
The corresponding curve for (b)  is indistinguishable from the solid curve. The roton 
width r R  is taken throughout as 0.15 K after Greytak et al (1970). The calculations 
(b)  are chosen to represent the spectra for d symmetry and (c) for s symmetry. 

Table 2. Peak frequencies (in kelvins) for the Raman spectra as observed experi- 
mentally and as calculated 

Resolution width 4.2 K 2.1 K 0.7 K 
Experiment 18.7 t 17*85$ 17.02t 

g4 = 0 18.75 18.00 17.64 
g, = -12 17.10 17.06 17.02 
g, = -6  18.10 17.70 1740 

t Greytak and Yan (1969). 
$ Greytak et a1 (1970). 

The shape of the peak is also dependent upon the strength of the interactions 
and figure 46(a) indicates that the agreement is most satisfactory for the model 
without interactions. Although this result is dependent upon the detailed shape of 
the resolution function, the 4 dependence of the interactions and the form factor 
M ( q ) ,  we believe that this and the resolution dependence of the peak frequency 
indicate that the interactions between the rotons are considerably smaller than 
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suggested by Greytak et al  (1970). The  binding energy of the bound state is less 
than 0.1 K with an interaction g, of less than 6 x ergcmF3. The  results for 
the peak frequencies obtained with this interaction are shown in table 2. Since this 
interpretation fails to give the peak frequency for the high resolution experiment of 
figure 46(b) correctly, we must discuss the possible origin of this discrepancy. 

The  neutron scattering experiment on which the calculations were based was 
conducted at 1.1 K whereas the Raman scattering measurements were made at 
1.2 K.  An increase in temperature does reduce A, $ 3.4.2, but the reduction is not 
sufficient to account for the discrepancy. The  roton energy is also pressure 
dependent, $3.4.2, but both neutron and Raman scattering measurements were 
obtained at the saturated vapour pressure. It is apparent from the pressure depen- 
dence of A, see $3.4.1, that if the pressure in the Raman scattering measurements 
were 1 atm, then the discrepancy would be almost removed. The  determination 
of A in the neutron scattering experiments is possibly in error by 0.17 K,  but an 
error of this magnitude would destroy the agreement found in figure 44(a). We 
conclude that there is at present a significant discrepancy between the theory of the 
Raman scattering and the available experimental results, which prevents us from 
being confident of the existence of a bound two-roton state. The  present evidence 
suggests that if it exists at all it has a binding energy of less than 0.1 K. 

No attempts have as yet been made to understand the very high frequency part 
of the Raman scattering. Its similarity to that observed in gases suggests that a 
collision theory similar to that used for gases (Gerstein et al 1970) might be 
appropriate. 

5.3.4. Roton-roton interactions. The theory of the Raman scattering from liquid 
helium has introduced a roton-roton interaction to explain the two-roton bound 
state but also requires an interaction to explain the roton lifetime r R .  The  results 
of Greytak and Yan (1971) show that the roton lifetime may be wi,itten as 

where NR is the roton density at any given temperature. This result appears to be 
in agreement both with the neutron scattering measurements of the lifetime, 
$3.4.2 and figure 13, and also with Brewer and Edwards’ (1962) measurements of 
the viscosity of helium. 

Khalatnikov (1965) discusses roton-roton scattering using the theory of Landau 
and Khalatnikov (1947) by assuming a repulsive interaction between two rotons, 
VR 6(r, - r2),  and calculating the scattering by the ‘golden rule’ of perturbation 
theory. The  theory then agrees with the experiments for r R  if 

VR = 2 x 10-33 ergcm-3. 
The  roton bound state in the Raman scattering is not given by the Khalatnikov 
potential because it does not contain any d-like components. The  binding energy 
of the rotons suggests that this component is V g  = - 1.2 x erg ~ m - ~ .  T h e  dis- 
crepancy between these results has led to a recent reinvestigation of roton-roton 
scattering by Yau and Stephen (1971), Nagai et a1 (1972) and Solana et aZ(1972). 

The  first two authors suggest that at large distances rotons interact through the 
backflow fields and that this interaction is of a dipole or d-like form. They show 
that this form of interaction is capable of explaining the value of V g .  

The  calculation of r R  by Khalatnikov (1965) is criticized by all the authors. 
Yau and Stephen and Nagai et a1 show that for the strength of interaction the Born 

rR = 2 x 1O1ONR s-’ 
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approximation, and hence the golden rule, is invalid, and that a more complete 
T matrix theory gives much less scattering for a repulsive interaction and more 
scattering for an attractive interaction They suggest that the scattering of the 
rotons must arise from the short but finite range interaction between the rotons 
of the form V(Y)  = V, exp ( - r2/b2),  for example, with b about 1-2 A. Solana et a1 
use a Green function treatment in which they improve on Khalatnikov’s approach 
by using the density of states calculated by including the attractive roton-roton 
interactions. The  roton lifetime is then calculated selfconsistently. In  contrast 
Yau and Stephen say that since the roton binding energy, at most 0.34 K, is less 
than the temperature of the measurements of rR, about 1.5 K,  the bound state has 
little effect on the cross section. 

Clearly further theoretical work and measurements are required before roton- 
roton scattering is fully understood. If, as suggested by Yau and Stephen, the 
s part of the roton-roton interaction is repulsive and ten times stronger than the 
d part it will have a large effect on the s-like part of the Raman scattering. This has 
been calculated, and is shown by figure 46(c), using the same M ( q )  factors as for the 
d part of the scattering. This is very likely a poor approximation and the intensity 
is probably further reduced as a result. Despite this problem, however, the s part of 
the scattering, if observable, might well provide very useful information about 
roton-roton interactions. 

6. Theories of liquid helium 
It is the purpose of this section to review the theory of the structure and 

excitations of liquid helium. Since there is not a wholly convincing theory available 
despite the enormous amount of work which has been expended on this problem, 
it is necessary to describe a variety of different approaches. We shall not, however, 
attempt a fully inclusive review of the theory but merely describe those approaches 
which seem to us, largely subjectively, to be the most promising. We begin with 
the most ambitious approach; namely a full microscopic theory which introduces a 
pair potential between the atoms and attempts to calculate the properties from this. 
Despite considerable formal progress, it has not yet been developed to give a 
detailed description of liquid helium. The  next section discusses a variety of 
variational calculations for the structure factor S(Q). These are considerably more 
successful in that they are able to reproduce the experimental curve quite satis- 
factorily. We then describe less ambitious theories for the scattering function, 
S(Q,w).  These theories are based either on a phenomenological form for the 
hamiltonian, or on a parametrized form of S(Q,w)  with the parameters obtained 
from moment relations. 

6.1. Microscopic theory 
6.1.1. Formalism and exact results. Most of the recent microscopic theories of 
liquid helium have made use of many-body techniques as described, for example, 
by Abrikosov et a1 (1964). I t  is not our intention to review either the use of these 
techniques in detail, or their particular application to liquid helium, but merely 
to point out what seem to us to be the most important developments. 

I n  a gas of noninteracting bosons, the ground state at absolute zero has all the 
particles in the same state with momentum zero. This macroscopic occupation of a 
particular state leads to difficulties in the application of many-body techniques to 
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Gl1(q, w) = - i I d t  exp (iwt) (Ta+(q, t) a(q, 0)) 

G d q ,  w) = - i l d t  exp (iwt) (Ta+(q, t) a-( - q, 0)) 

G,,(q, w) = - i j d t  exp (iwt) (Tu( - q, t) a(q, 0)) 

G d q ,  w) = - 1 '?' dt exp (iwt) (Ta(  - q, t )  a+( - q, 0)) 

liquid helium, but these were overcome by Beliaev (1958) and by Hugenholtz and 
Pines (1959). The  hamiltonian for N helium atoms is the sum of the kinetic energy, 
T,  and the potential energy, V. These may be written in terms of particle creation 
a+(q) and destruction a(q) operators, where q is the wave vector of the particle. 
The  kinetic energy is given by 

) 

If the potential is a two-body pair potential the potential energy is 

V = 8 c V q )  P + ( d  P ( @  
9 

where V(q)  is the Fourier transform of the interaction and p(q )  is the density 
operator which is given by 

= c a+(k) 4 k  + 4 ) .  
k 

If there is a macroscopic occupation of the state with q = 0, the operators a+(O) 
and a(0)  will only change the number of particles in that state, n(O), by a fractionally 
infinitesimal amount. They may therefore be replaced by the number n(0)'h. The  
density operator is then 

P ( Q )  = n(0)l 'wq) + a-( - a)) + c .+(k) a(k + q). (6.1) 
k+O 

The part of the potential energy which depends on the particles outside the 
condensate is 

where 
V = v , + v , + v ,  

4 0 )  v, = 2 c [ V ( 4  wl) aL(!7) + .+(!I) 44 + 44 4 - !z) 
9 

+ a+(d a+( - !?)I + V(0) {a" 44 + a'(d11 

and 

The  theory is then developed by introducing the Green's functions for the 
particles not in the condensate. Since, however, the hamiltonian for these particles 
does not conserve the number of particles, it is necessary to use an effective 
hamiltonian, H -  p N ,  where p is the chemical potential, and, further, to introduce 
four Green's functions instead of the one needed for normal systems. These 
Green's functions are defined by 

46 
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where T is the time ordering operator. These Green's functions may then be 
calculated using the normal techniques of many-body theory with an effective 
hamiltonian given by 

H' = c (%I) - P )  a + ( 4  a(@ + v, + V, + v, (6.6) 
9 

and with E ( q )  = Vqz/2M. The rules for the calculation of the terms in the 
diagrammatic perturbation theory are given by Abrikosov et a1 (1964), and the 
diagrams are similar to those of a normal fermion system except for the presence of 
the interactions V, and V,. In  representing these diagrams n(0)'/2 is represented by a 
dotted line with an arrow at the end. The  Green's functions (6.5) may be obtained 

Figure 47, The four different self-energy diagrams are shown in general with a particular 
example of each type. 

from the effective hamiltonian (6.6) by treating the unperturbed part of the 
hamiltonian as the leading term and the potential terms as perturbations. There 
are then four types of self-energies as shown schematically in figure 47. Reliaev 
(1958) obtained the Dyson equation for the Green functions (6.5) in the form 

(kw., - E(@ + P )  G,,(!z, w) = a,, + c M,p(a, w) G,,(% 0) (6.7) 
P 

where T, = 1, - 1 when 01 = 1,2 and MEP(q, w) is the self-energy matrix which 
satisfies 

M11(!7,w) = M,d% - w), 

l W Z ( %  w) = M,I(!z, U)' 

The Green's function is therefore 

where 
Gld% w) = ( km + E ( q )  - P + 1VZd!l, w)) lD ,  (6.8) 

D = (Zw - E ( d  + P - Mll(q7 w)) (kW + E ( 4  - P + M22(% U)) + (MIZ(!A 
Translational symmetry shows that for q = 0 and w = 0 equation (6.8) must 

have a solution with D = 0. This imposes the condition that 

( P  - Mll(0, 0)l2 = 1V12(0, 

and Hugenholtz and Pines (1959) showed that from the two solutions to this 
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equation the correct solution is 

P = MdO’ 0 )  - M,,(O’ 0) .  
This result gives a relation between the self-energy and the chemical potential. 
A relation may also be obtained between n(0) and the Green’s functions by use of 
number conservation ; 

1 0  
N-n(O) = Im{G,,(q,w-iO+))dw. 

-cc 

The scattering cross section is not dependent on the one-particle Green’s 
function but on the density-density correlation function. If we define 

(6.10) 

the Van Hove structure factor is given by 

I n  the diagrammatic analysis for F ( q ,  U ) ,  there are certain terms which contain 
the single particle Green’s function as a factor. These are known as the singular 
part, <(q,w), because the imaginary parts of these terms will be peaked near the 
poles of the one-particle Green’s function. The  contribution of these terms to the 
scattering may be written as 

= z M q . ,  G,/9(!7’ Ap(Q9 (6.11) 

where A a ( q , w )  = n(O)’’z+P,(q,w) is the summation of all those processes by 
which the density operator p ( q )  couples to the single particle operator a+(q), or 
a(q) ,  as represented in figure 48. The  remaining part of F ( q , w )  is known as the 

A 

- 

I 
V 

Figure 48. Two diagrams contributing to P,(q,w).  The Green’s functions of the internal 
lines are described by two arrows: -+c = GI,, +--c = Gzl, etc. 

regular part F,(q, w )  and consists of all those diagrams which at all points have two 
or more single particle lines. 

The  result given by equation (6.11) is of great importance because it shows that 
the poles of the single particle Green’s functions will also be poles of the density- 
density response function. The  frequencies observed for the sharp peaks in the 
neutron scattering experiments are therefore the frequencies of the poles in the 
single particle functions. I t  is, however, important to note that although some of 
the poles in G,,(q, w )  and F ( q ,  U )  occur at the same frequencies, their residues may 
and usually will be different, and also that any broad features in the spectral 
responses may be quite different in the different Green’s functions. It is there- 
fore necessary to distinguish between calculations of the density-density Green’s 
function, which may be directly compared with neutron scattering experiments, 
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and calculations of the single particle Green’s function which may have the same 
poles but may not be compared with these experiments in detail. 

These results are very general, but in most cases it is necessary to make 
approximations to proceed further. The  only exact results which have been 
obtained are in the long wavelength and low frequency region where a very careful 
diagrammatic analysis by Gavoret and Nozieres (1964) gave results for the Green’s 
functions at T = 0 as 

lim G,,(q, w) = - lim G,(q, w) 
q.w+O q,rlJ+O 

- n( 0 )  Mc2 - 
NV(w2 - c2 q2 + io-) 

and for the density-density Green’s function as 

q2 lim F(q ,  w) = 
qd’J+O ,W(w2 - c2 q2 + io+) 

(6.12) 

(6.13) 

showing that both functions have only a single pole, corresponding to the macro- 
scopic sound velocity, and that this pole is the only contribution to the spectral 
responses as q and w become small. Similar conclusions were obtained by 
Hohenberg and Martin (1965) and Huang and Klein (1964). 

6.1.2. The Bogoliubov approximation. T h e  classic work of Bogoliubov (1947) on 
the dilute weakly interacting gas is equivalent to considering only the first term in 
the potential energy; namely V, of equation (6.2). The  self-energies are then 
given by 

(6.14) 

giving the chemical potential p = n(0) V(0).  The  one-particle Green’s functions 
then have only a single pole at the frequencies given by 

(6.15) K 2  wB(q)2  = E(q)2 + 2E(q) n(o) ‘ ( q )  
and the Green’s function is given by 

(6.16) 

The  occupation of the zero-momentum state, n(O), is then obtained self-consistently 
from equations (6.16) and (6.9). 

If we compare this result with the exact result (6.12)’ they are equivalent as 
q and w+O if n ( 0 )  V(O)/;ll = c2 and n(O)/N = 1. The  Bogoliubov approximation 
is therefore a satisfactory approximation only if n ( 0 ) j N  is very close to unity, 
which in turn is equivalent to assuming that the interactions are very weak. 

The  density-density response function is obtained by neglecting PE(q, w )  in 
comparison with f i(O)’/2 in equation (6.11) when the singular part of F ( q ,  U )  is 

When q, w+O, this result is again equivalent to the exact result (6.13) provided 
that the difference between n(0) and N is neglected. 
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The  Bogoliubov approximation is therefore a small V approximation, but 
nevertheless is inconsistent with the known exact results. Its great triumph is 
that it shows that if the potential is repulsive, that is if V(0) is positive, the dispersion 
relation is linear with q (equation (6.15)). I t  fails to be consistent, however, because 
this of necessity implies that n(0)  < N when the theory fails to give the correct 
results for either G,, or F as q and w+O. 

6.1.3. The T matrix approximation. The Bogoliubov approximation is dependent 
upon the potential being sufficiently weak that first-order perturbation theory is 
adequate. Since it is impossible for two helium atoms to be at the same point at 

( U )  (6) 

Figure 49. Two ladder diagrams, shown in (a), for the effective interaction P which is given 
by the integral equation shown in (b).  

the same time the potential is certainly not weak at short distances. Brueckner and 
Sawada (1957) developed a theory allowing for strong repulsive interactions by 
assuming that the liquid was dilute. They showed that if the strong potential is of 
radius a then a suitable expansion parameter is (pa3) where p is the density. 

Basically the approximation is to replace the interaction in the Bogoliubov 
approximation by the series of ladder diagrams shown in figure 49(a). The  effective 
interaction is then dependent upon the wave vectors and possibly the frequencies 
associated with the four lines involved in the interaction, and is given by the 
integral equation, figure 49(b), 

x Q1+ Qz - k ,  Q 3 ,  4 4 ) -  

Brueckner and Sawada were able to solve this equation by making the centre-of- 
mass approximation, when V is independent of q1 + q2 and the frequencies a 
associated with the particle lines. Parry and ter Haar (1962) have estimated the 
error produced by this approximation to be only about 3 %. Brueckner and Sawada 
then suggested that the Green’s functions in the integral equation could be 
approximated by neglecting the off-diagonal parts of the self-energy kfl2(q, w )  
when it is unnecessary to distinguish between the different components K1, V,, etc. 
Finally they assumed that the scattering was dominated by the s-wave part of the 
scattering potential. 

Once the effective interaction T matrix has been obtained the quasiparticle 
spectrum, n(O), and G,,(q, w )  are all obtained from the expressions deduced by the 
Bogoliubov theory but with V ( q )  replaced by a(O,O, Q ,  - 4). 
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Calculations have been performed with this theory by Goble and Trainor 
(1968) who used various hard-core radii and solved the equations selfconsistently 
for n(0)  and the excitation spectrum. They found that n(0)jN varied from 0.37 to 
0.79 as the hard-core radius was altered from 3.0 to 1.0 A. Byckling (1966) per- 
formed similar calculations, but allowing for all partial waves, for a hard-core 
potential of radius 2.6 A and for a Lennard-Jones potential. He  was unable to 
obtain n(0)  selfconsistently but the calculated excitation curves were qualitatively 
similar to the experimental results. The  value of n(0)  calculated from these curves 
was however in both cases larger than N .  

Singh and Kumar (1967, 1970) have extended the theory to include a weak 
attractive interaction in addition to the repulsive core. The  attractive interaction 
is treated by first-order perturbation theory and the repulsive interaction by a 
T matrix. They also consider higher-order diagrams for the self-energy. 

All of these theories give results which at low frequencies reduce to the 
Bogoliubov approximation with a modified form of potential. They will therefore 
only be consistent with the exact result (6.12) if n(0)jrV- 1. In  all the numerical 
calculations the spectra which agree even qualitatively with the experimental 
results give n(0) jN very different from unity. We conclude therefore that although 
T matrix corrections are important to take account of the strong correlations 
produced by the repulsive interactions at short distances, it is also necessary to 
include more complex diagrams to obtain a theory of liquid helium. 

6.1.4. The shielded potential approximation. Another approach to approximating 
the self-energies for liquid helium has been that of Tserkovnikov (1965, 1967), 
Pines (1966a,b), Etters (1966) and of Cheung and Griffin (1970, 1971) who have 
attempted to apply the same approximations as those inherent in the random phase 
approximation of an electron gas. Initially it is useful to distinguish between proper 
and improper contributions to the functions G,,, F and A defined in $6.1.1. 
(Kondor and Szepfalusy 1968). The  proper parts of these functions, denoted by 
gap, etc, are those parts which cannot be separated into two by cutting a single 
interaction vertex in two. In  terms of the proper parts of the functions it then 
follows immediately that 

FR(q,  = '?R(q, - v(q) FR(q, 
F ( q ,  U )  = g ( q ,  U ) / ( l -  v(q) q q ,  U)) 

&(q, w )  = fl,(q, w ) / ( l -  Y ( q )  F R ( Q ,  U)) 

= x 4 4 c 7 , U )  %p(Q,  w )  f l , h  w )  
a, 

and 

These results are exact and important because they enable us to make a further 
connection between structure in the density-density function and in the single 
particle functions. I n  36.1.1, we showed that the poles in G,,(q,w) occurred in 
F ( q , w )  through F,(q,w). The  regular part of F ( q , w ) ,  F,(q,w), has a pole when 
(1 - V(q)  gR(q,  w ) )  has a zero. Since the same denominator occurs in A,(q, w )  
and hence in A&,(q,w) the one-particle self-energy will have a singularity at the 
same frequency as the pole of FR(q, U) .  Structure in the single particle self-energy 
will therefore be mirrored in the regular part of the density-density Green's 
function. 

Mx,(!l, 0) = w )  + fl,(q, w )  P ( q )  cl,(% U>* 
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Approximations are needed before detailed calculations can be performed with 
this formalism. The  approximation used in the shielded potential approximation is 
to include only those terms which correspond to the Bogoliubov approximation, 
but to replace the bare interaction with the shielded interaction. This corresponds 
to neglecting the proper self-energy, &? and writing A, = n(O)l’z when 

In  figure 50 we show a graphical representation of 1W, FR and F, in the shielded 

I I 

+ 

+ 4 4  m =  - 
A ? + 

Figure 50. Schematic representation of the shielded potential approximations for M ,  FR 
and Fs. 

potential approximation. Using these results both the single particle and density- 
density correlation functions may be obtained for a particular approximation to 

The  simplest approximation is to assume that F R ( q , w )  is given by a simple 
FE(!l, U ) .  

polarization bubble, namely, 

, P  

Strictly the theory should now be made self-consistent by using G,,(q, U )  calculated 
from the self-energy (Tserkovnikov 1967). Cheung and Griffin (1970) suggested 
replacing the Green’s functions on the right hand side of equation (6.17) for 
F,(q, U )  by free boson Green’s functions, but this leads to difficulties at absolute 
zero because SR(q, w )  then vanishes. 
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Although the theory has not as yet been applied in full detail it has several 
appealing features. Firstly the self-energies are complex functions of q and w ,  
unlike the real functions of the T matrix approximations. The  Green’s functions 
are not therefore single poles but may exhibit more structure. This is clearly a 
great improvement if the theory is to explain the neutron scattering results of $ 3. 

On a more quantitative level the results give a more satisfactory result for the 
velocity of sound at finite temperatures. Etters (1966) approximates F ( q ,  w )  by 
F,(q, w )  and then calculates gR(q, w )  using free boson Green’s functions. FR(q, w )  
has a pole when 

(6.18) 
P 

where n ( p )  is the Bose occupation number. On expanding this function for large 
w a dispersion relation is obtained for small q 

where the velocity c is given by 

c2 = n( p )  V (  O ) / M  
P 

and ( p 2 }  is the mean value of p2 .  This result shows that the velocity is not 
dependent upon n(0) as given by the Bogoliubov approximation but upon c,n(p) .  
I n  the former case the velocity would be expected to be strongly temperature 
dependent (Hohenberg and Martin 1964) whereas in practice, as described in 
$3.4.2, it is largely independent of temperature. Although in our derivation of 
the velocity the c p n ( p )  excludes the particles in the zero momentum state, by 
including the appropriate part of F, (q ,w) ,  the sum may be extended over all the 
particles to give a result which is largely independent of temperature in agreement 
with the experimental results $ 3.4.2. This theoretical development is certainly not 
accurate because of the use of the free Bose Green functions to calculate g R ( q ,  w )  
and because of the high frequency expansion. In  practice the average kinetic 
energy of those particles which are not in the condensate is sufficiently large that 
this expansion is invalid. Despite these difficulties the results are strongly suggestive 
that the screened potential approximation is useful. 

Tserkovnikov (1967) and Cheung and Griffin (1970) have also examined the 
zeros of the function (1 - V(q)  FR(q, U ) )  with different approximate forms for 
gR(q,  U ) .  Both sets of workers conclude that at small w and Q there are two sets of 
solutions. One corresponds to the normal sound waves propagating with velocity, 
c, and the other to a new sound-like wave propagating with a velocity c2 which is 
proportional to n(0)’:~. They suggest that the one-particle Green’s functions 
G,,(q, U )  may have two poles corresponding to these two branches of the excitation 
spectrum, but that the new branch may be overdamped. In  contrast in the density- 
density response, F ( q ,  U ) ,  this new mode has negligible weight so that it could not 
be observed by neutron scattering experiments. These authors conclude that this 
new excitation is a form of collisionless second sound, in contrast to the normal 
second sound mode which occurs in the thermodynamic regime. The  existence of 
this branch is certainly one of the interesting predictions of the theory. Un- 
fortunately we cannot at present rule out the possibility that it arises from the 
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approximations used to evaluate FR(q, w ) .  In  particular at absolute zero, FR(q, w ) ,  
cannot have an imaginary part for small q when w < cq. The new mode, if it exists, 
must be well defined in this limit. The  large damping found by Cheung and Griffin 
(1970) arises from their use of the free Bose Green’s functions in calculating 
FR(q, 0). It remains an open and very interesting question whether this collision- 
less second sound exists or whether it results from the approximations in the theory. 

Ma et a1 (1971) and Gould and Wong (1971) have used a similar theory and 
examined the poles of the F ( q ,  w )  through the equation 

1 = V ( Q ) F ( Q , w ) .  
Since they were primarily interested in the q+O limit, it was technically 
advantageous to rewrite P(q, w )  in terms of the current-current Green’s function. 
They then evaluated these expressions by approximating FE( q, w )  by the simple 
bubble diagram of equation (6.17) and also considering the first two terms in the 
expansion of A,(q, w ) .  I n  this way they selected all those diagrams for which there 
was one closed ring of single particle lines. 

All of these contributions contain terms involving two Green’s functions such 
as given in equation (6.17) and in their approximation they treated these Green’s 
functions within the Bogoliubov approximation. Expressions for the q dependence 
of the excitation frequency, w(q) ,  were obtained by expanding these terms in a 
power series in q. The  most unexpected feature is that some of the integrals over 
p diverge as p -+ 0. I n  this region the expansion for small 4 is clearly invalid but 
the divergence led Gould and Wong (1971) to suggest that the dispersion relation 
is given by 

and they obtained expressions for the coefficients co, c2 and c4 in terms of the 
interaction between the helium atoms. Ma et al (1971) obtained a similar result 
for the temperature dependence of the sound velocity namely 

4 4 )  = dco + cz q2 + c4 q4 In (119)) 

Re = 1+A,  T 4 + B T 4 1 n ( l / T ) +  .... 

Both of these results are clearly of interest in comparison with the power series 
expansions used to describe the experimental results at small q ($3.3.3). 

The  difference between these results and those obtained by calculating 
FR(q, w )  with free Bose propagators emphasizes the importance of making appropri- 
ate approximations in the theory. Neither of the approaches has been made self- 
consistent and there is no proof that it is adequate to approximate FR(q, w )  by the 
leading term. I n  all of these theories, as emphasized by Cheung and Griffin (1970) 
and by Ma et a1 (1971), the potential V(q)  should be replaced by the T matrix or 
effective potential, P(ql, q2, q3, q4), as introduced in 5 6.1.3. The  strong repulsive 
interactions at short distances do not then give rise to divergent results in the 
summations over wave vector. Clearly we must await further developments of this 
theory before it is possible to assess whether some low order approximation to 
FR(q, w )  gives a satisfactory theory of liquid helium, or whether it is necessary to 
include such complex diagrams that the theory becomes unmanageable. 

6.1.5, Other developments. Several theories of liquid helium have exploited the 
similarity between the X transition of liquid helium and the superconducting phase 
transition in metals and have suggested that there is a similar pairing in liquid 
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helium. In  the original pairing theories of Valatin and Butler (1958), Girardeau 
and Arnowitt (1959), Luban (1962), Kobe (1968) and Brown and Coopersmith 
(1969), a macroscopic occupation of the zero momentum state was assumed and the 
Bogoliubov transformation performed. The  remainder of the hamiltonian was, 
however, truncated so that it could be diagonalized in a similar manner to that used 
in the theory of superconductivity. There seems to be no justification for this 
truncation in practice, unlike the case of superconductors. 

Recently pairing theories have been developed in which there is no macro- 
scopic occupation of the zero momentum state, but an effective attractive inter- 
action between the particles to produce a pair condensation (Congilio et a1 1969, 
Evans and Imry 1969). This variant of the theory is unrealistic. A repulsive 
interaction must exist between helium atoms because they cannot occupy the same 
position in space and also because the liquid has a positive compressibility. In  
superconductors the exclusion principle provides the effective repulsion to keep 
the particles apart, and the interaction may be attractive, but in helium the inter- 
action must be effectively repulsive. 

A related but somewhat different formalism to that described above has been 
developed by Brandow (1969, 1971). He suggests that instead of using the many- 
body theory developed by Beliaev (1958) and by Hugenholtz and Pines (1959) 
it is preferable to treat helium as a fermi system with infinite spin degeneracy. The  
infinite spin degeneracy permits the condensation of all the particles into a single 
spatial state, and has the advantage that the techniques developed by Goldstone 
(1957) for fermi systems may be taken over directly to liquid helium. This obviates 
the need to introduce a chemical potential and enables conservation of particles to 
be enforced rigorously at all stages in the development. 

He then suggests that the important contributions to the energy and self- 
energy of the particles arise from the short range correlations in the motions of the 
particles as found by Bethe (1965, 1967) in nuclear matter. It is of interest that the 
development distinguishes between those terms in the self-energy which may be 
represented as an effective potential and hence summed, and those terms which 
are energy dependent and far more difficult to treat. I n  the anharmonic theory of 
solid helium (Werthamer 1969) the success of the selfconsistent theory shows that 
inclusion of the former terms and neglect of the latter is a reasonable approximation. 
We must await further results however before we can assess Brandow’s theory in 
detail. 

Finally the theory we have described has been largely restricted to absolute zero. 
As shown for example by Abrikosov et a1 (1964), there is no difficulty in extending 
the techniques to finite temperature, and the development has been pursued by 
many authors. I n  view, however, of the lack of success in quantitatively calculating 
the properties of liquid helium at absolute zero, it is not appropriate to review these 
developments here. 

6.2. Calculations of S(Q) 
By far the most 

have been made by 
wavefunction. The  

successful calculations of the structure factor of liquid helium 
use of variational techniques and an approximate form of the 
hamiltonian of the system is given by 
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where V ( r )  is the two-body potential function which in the case of liquid helium 
may be reasonably taken be to a Lennard-Jones potential 

V(Y) = 4E((;)12- (y) 
with E = 10.22 K and U = 2.556 A as determined by de Boer and Michels (1938). 

Since this potential is large whenever two particles are close together, the trial 
wavefunction must be taken to be of a form such that it is small whenever pairs 
of particles approach. This is most simply achieved with a Jastrow function 

Y = exp(U(rij)/2). 

On substituting this wavefunction into the Schrodinger equation, the ground state 
energy per particle is 

i<j 

(6.19) 

where v is the volume of liquid and g ( r )  the pair distribution function, which in 
terms of the wavefunction, is given by 

v2 J 1 Y(r1, . . ., rAV) l 2  dr, . . . dr, 
g(r ,  - rz) = J I  Y?(r,, . . ., rLv) l 2  dr, . . . dr, (6.20) 

which in turn is related to S(Q) by 

The  one-particle density matrix may also be defined in terms of the wave- 
function by 

NJY(r, r,, ..., rAv)Y(r’ ,  r2,  ..., rLv) dr, ... dr, 
n(r - r’)  = J I Y( rl, . . . , rN)  l 2  dr, . . . dr, 

For large r - r ’ ,  Penrose and Onsager (1956) showed that n(r-r’)  approaches 
n(0) the occupation of the condensed zero momentum state. The  occupation 
numbers for the other states are obtained from 

n(q )  = J (n ( r )  - n(0)) exp (iq . r )  dr. 

Hence, once the wavefunction has been found the energy, S(Q), and the occupation 
numbers can be found. 

There have been two approaches adopted to obtain the wavefunctions from 
equations (6.19) and (6.20). The  direct method is difficult numerically because 
equation (6.20) contains a multidimensional integral for each of the helium atoms. 
McMillan (1965) and Schiff and Verlet (1967) have both adopted the direct 
procedure, however. They approximated U ( Y )  by 

U,(r) = - (a/?)% (6.21) 

and calculated the integrals for a variety of values of a and n. McNIillan (1965) 
performed the integrals with a Monte Carlo procedure and a system of either 32 
or 108 helium atoms. The  minimum energy, density and n(O)/N are listed in table 3 
and occurred when a-2.7 A and n-5 .  Schiff and Verlet (1967) evaluated the 
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integrals for 864 particles by using the techniques of molecular dynamics. Their 
results are listed in table 3 and shown in figure 51. The  minimum was obtained 
with a-2.9 A and n - 5 .  The values of n ( q )  obtained by McMillan (1965) are 
shown in figure 52. 

Table 3. The values of the density Nmi,/N (fractions of the density at T = 0), the 
minimum energy Emin, the energy E at density iV, and the fraction of particles in 

the zero momentum state, n(O)/N 

N m i n I N  E m i n  E n ( O ) / N  
McMillan (1 965) 0.89 5 0.01 - 5.9 - 5.66 0.11 * 0.01 
Schiff and Verlet (1967) 0.9 f 0.1 - 5.95 - 5.73 0.105 k 0.005 
Massey and Woo (1967) - 6.06 - 6.02 
Campbell and Feenberg (1969) - 6.7 
Francis et a1 (1 970) 

Short range only 0.97 - 6.29 0.131 
Total U(r) 1.035 - 6.77 - 6.72 0.101 

Experiment 1 .o -7.14 - 7.14 

I “L .2 

0.6- i 
4 

I I 1 I I 
1.0 2.0 3:O 4.0 5.0 

0 [i-‘) 
Figure 51. The structure factor S(Q): - , experimental results from Achter and Meyer 

(1969); - - - -, calculations by Schiff and Verlet (1967); -*-.- , calculations with a 
hard sphere model from Reatto and Chester (1967). 

The  alternative approach to performing the integrals in equation (6.20) is to 
obtain another relation between g(Y) and U ( Y )  which is more convenient compu- 
tationally. Several equations of this type have been found in the theory of classical 
liquids (Egelstaff 1967), and the results may be adapted to liquid helium without 
difficulty. For example, the BBGKY equation, known by the initials of its originators, 
was derived by Wu and Feenberg (19624, in the form 

-A--.=- dU(r) dg(Y) ’ N / g ( r ’ )  U(Y’) {g( I r - r’ I )  - l} cos (rr’)  dr’ dr dr  g ( r )  

where cos(rr‘) is the cosine of the angle between r and r‘. 
This equation is only approximate and other approximate equations connecting 

g ( r )  and U ( Y )  have been derived, and are known as the hypernetted chain (HNC) 
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equation, the Percus-Yevick equation (Feenberg 1970) and the modified Percus- 
Yevick equation (PYZXS) (Francis et aZl970).  A priori it is by no means clear which 
of these equations will give the most satisfactory results in any particular instance. 

"O\ 

p t i - ' ,  

I 1 I I I I 

p t i - ' ,  

Figure 52.  The distribution of particles n,( = n ( p ) / N )  and p z  n,: - - - , as calculated by 
McMillan (1965); - , an empirical fit including the correct behaviour as p .+ 0 by 
Gersch and Smith (1971); - - - - -, a single gaussian fit giving the same average kinetic 
energy as McMillan. 

Lee (1969) used the HNC equation and equation (6.21) for U(r) .  The BBGKY 
equation was used by Massey (1966) and by Massey and Woo (1967) to obtain 
S(Q) for liquid helium. The pair distribution function was chosen to have a 
complex form involving five parameters which were varied to find the minimum 
energy. The  results for the Lennard-Jones potential are listed in table 3, and are 
similar to those obtained with the other technique. Their results for g ( r )  are also 
very similar. 

All of these calculations gave a nonzero result for S(Q) when Q = 0 in 
contradiction to the exact result, equation (6.13). Reatto and Chester (1967) 
showed that the discrepancy arose from the inadequacy of the assumed form of 
U(r) .  The virtual phonons in liquid helium give rise to long range correlations in 
the ground state wavefunction and Reatto and Chester calculated this correlation 
with the aid of a phonon model. They suggested that 

W Y )  = uL(r) + Vs(r)  
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where U S ( y )  is the form used before and 

cM 
x2  N7i U,(?,) = - - ( y 2 + k ; 2 )  

with k, an arbitrary cut-off wave vector for the phonon model. This result shows 
that the long range correlations in the ground state fall off as 1/y2, and this makes 
the numerical work involved in the calculations for all of the methods more difficult. 
An approximate form for S(Q) may be obtained by taking advantage of the different 
range of UL(r) and US(y)  to give 

S(Q> = S0(Q>/(1 + lVUL(Q) SO(Q)) 
where U,(Q) is the Fourier transform of UL(r)  and So(Q) is S(Q) calculated with 
U ( Y )  = U,(Y). This result suggests that these long range correlations will only be 
of importance for small wave vectors, Q. 

I I I I I 

1.4 'I 
i 
i 

Figure 5 3 .  Calculations of S(Q) by Francis et  aZ(1970) (- - - -) and by Campbell and Feenberg 
(1969) (-.-e-- ) as compared with the measurements of Achter and Meyer (1969) 
(- ). 

Schiff and Verlet (1967) discuss the importance of U,(Y) by including it as a 
small perturbation in their molecular dynamics approach. Their results show that 
the energy decreases as k, increases and they conclude that the inclusion of U,(Y) 
improves S(Q) at small Q without appreciably changing the other results. Francis 
e t  a1 (1970) developed the P Y ~ X S  equation in order to minimize the computational 
difficulties of using the full U ( Y )  throughout the calculation. They chose the values 
of a = 2.9 a and n = 5 for U S ( y )  and then varied k, to obtain the results listed in 
table 3. In  figure 53 we show their results for S(Q) as compared with experimental 
results, and in figure 52 the correction to n ( q )  resulting from the different behaviour 
as q+ 0. The  inclusion of the long-range part of U(r )  largely changes the curve for 
n(q) at small q, where n(q) is a constant if OL(y)  is neglected but var;es as l / q  for the 
full U ( r ) .  

The'long-range effects were incorporated into U ( r )  in a somewhat ad hoc manner 
by Reatto and Chester (1967). A more systematic way of including these effects 
is to use the technique of improving Y developed by Jackson and Feenberg (1961) 
and applied by Campbell and Feenberg (1969). They considered a subspace 
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spanned by the ground state and all two-phonon wavefunctions, and then carried 
out a Bogoliubov transformation in this subspace to obtain an improved wave- 
function. The  transformation generates an equation which maximizes that 
improvement, and enables an improved S(Q) to be found. With this new S(Q), 
g ( y )  and U ( r )  are calculated using the normal integral equations. The  procedure 
may then be repeated with the new U ( Y )  to obtain a yet further improved S(Q) 
until convergence is obtained. In  their calculations Campbell and Feenberg (1969) 
initially took U ( Y )  from the work of Massey and Woo (1966) and then used their 
formalism to obtain an improved S(Q). Convergence was obtained after only one 
cycle. The  energy of the ground state decreased as shown in table 3 and the 
structure factor S(Q) changed slightly as shown in figure 53 and also was somewhat 
dependent upon the integral equation used to obtain V ( Y )  from S(Q). 

The  results of all these workers give quite good agreement (2: 15%) between 
experiment and theory for the ground state energy and S(Q). The  fraction of 
helium atoms in the zero momentum state, n(O)/N, is given by all the methods as 
about 0.11 F 0.02. Although the agreement with S(Q) is very gratifying it is 
unfortunately not unexpected. S(Q) has a very similar form for all one component 
liquids and in figure 51 we show the exact solution (Wertheim 1963) to the Perus- 
Yevick equation for liquid helium at its equilibrium density and with a hard sphere 
potential 

V = O O  ~ < 2 * 9 A  

V =  0 ~ > 2 * 9 A .  

The  results (Reatto and Chester 1967) are also in reasonable agreement with the 
experimental results and suggest that the form of S( Q) is comparatively insensitive 
to the details of the potential and probably the wavefunction. The  agreement shown 
in figures 51 and 53 should not therefore be interpreted as particularly strong 
evidence that the ground state wavefunction is well represented by a Jastrow form. 

Despite these qualms, the success of the calculations of S(Q) compared with 
the lack of comparable success with the microscopic calculations described in § 6.1 
has prompted a comparison of the two theories in the hope that the Jastrow 
function approach will suggest suitable approximations in the microscopic theory. 
Sim et a1 (1970) have applied both the microscopic approach and the Jastrow 
function approach to obtain the energy of the dilute Bose gas. They show that 
both approaches give identical results for those terms involving the potential 
( V ) m  for m less than 4. In  the terms of order ( V)4, the Jastrow function approach 
as optimized by Campbell and Feenberg (1969) gives correctly all the single ring 
diagrams ( a )  and simple ladder diagrams (e) ,  which are shown in figure 54. It fails 
to give either the mixed diagrams or cross-bar diagrams (b)-(d) of figure 54 correctly. 
These may be obtained, however, if corrections to the Jastrow function theory are 
included in low-order perturbation theory. On the basis of this analysis, and the 
success of the Jastrow function approach, Sim et a1 suggest firstly that the Jastrow 
function approach sums ring and simple ladder diagrams to all orders, and secondly 
that this might be a good approximation in the microscopic theory. Brandow (1971) 
in his microscopic theory makes similar suggestions ( $6.1 S).  

6.3. Direct calculations of the density juctuations 
I n  0 6.1 we described the microscopic theory of liquid helium and emphasized 

the difference between the one-particle response functions and the density response 
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Figure 54. Diagrams contributing to the energy of a dilute Bose gas of order (V)4. The ring 
diagrams (a)  and the ladder diagram (e) are given exactly by the Jastrow function 
technique as developed by Campbell and Feenberg (1969). This technique gives the 
mixed diagram (b),  the cross-bar diagram ( c )  and the side loop diagram ( d )  only 
approximately. 

functions which may be measured directly. One way of developing the theory is to 
eliminate the single particle properties from consideration, and to recast the whole 
theory in terms of the density operator. There have been two approaches to this 
problem; one of these approaches is to eliminate all reference to the single particle 
properties in the hamiltonian and hence to rewrite it in terms of the density 
operators directly. This approach is described in $6.3.1. The other approach is 
more akin to the calculations of S( $2) and introduces approximate wavefunctions 
for the excited state and then evaluates corrections to these wavefunctions and 
energies as described in $6.3.2. I n  the final sections we describe various aspects of 
the solutions to these equations. 

6.3.1. The hamiltonian in density fluctuations. The hamiltonian for liquid helium 
consists of a kinetic energy term, T,  and a two-body potential energy term. The  
latter is directly given in terms of the density operator p(q1) as 

v = c V ( q )  P ( Q )  P( - Q). 

The kinetic energy is given by 

T = - -  /VY*(r)  .VY(r)  d r  
2M 

and presents more difficulty to rewrite in terms of the density. The difficulties have 
been overcome by Sunakawa et a2 (1969) and by Bierter and Morrison (1969), by 
introducing a momentum density operator 

ift p (  r )  = - 7 (Y *(r )  V Y ( r )  - V Y  *(r)  Y(r))  

and introducing the density operator, p ( r )  = Y * ( r ) Y ( r )  into the expression for T 
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to give 

1217 

Taking the gradient of the density operator gives 

ikVp( r )  = 2ikVY*( r )  9?( r )  - 2p( r )  

which on substitution into the kinetic energy yields 

The  Fourier transform of the operators p and p obey the commutation relations 

[da),  fJ(Q’)I = 0 

[ P ( 4 >  p(a’)l = Q P  ( Q ’  - 4)  
and 

[P&)>P&’)I = k(Pa(q + Q’)  qp -P&7 + 4!’) qa). 
The  analysis proceeds by considering the perturbations in the density, p ( q )  with 
4 4 0 ,  and expanding T in a power series in these perturbations. Unfortunately 
the commutation relations are more complex than those for a canonical set of 
dynamical variables. In  particular the second relation is not zero even when 
q = q’. Sunakawa et a1 (1969) overcome this difficulty by introducing a new 
variable 

1 
h(q)  = P ( 4  - zp5qf (P - 4 h(q)  

which commutes with p ( q ’ )  when q f q ’ ,  and furthermore they show that the 
commutation relations [h(r),  p(r’)] and [h(r),  h(r’)] are identical with those assumed 
by Landau (1941) in his theory of quantum hydrodynamics. 

If vortex motion is neglected these commutation relations become 

and 

which are appropriate to canonical dynamical variables. The  hamiltonian may now 
be expanded in a power series in the operators p ( q )  and h(q)  to give 

This hamiltonian is further reduced by diagonalizing the quadratic part with a 
transformation to the creation and destruction operators for the density excitations 
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when the quadratic part of the hamiltonian becomes 

c E%(@ A*(@ 4Q) 
4 

with 

(6.22) 

and 

q2 
4 4 )  = ( 4 2  + ( 4 M N / P )  v(q)}liz' 

Equation (6.22) for the energy of the excitations may be compared with equation 
(6.15) for the energy of the single particle excitations in the Bogoliubov approxi- 
mation. They are identical apart from the replacement of n(0)  by the total particle 
number N ,  and hence the lowest order theory is far less temperature dependent. 
The  cubic term in the hamiltonian may be rewritten in terms of the density 
excitation operators as 

H I  = K ( P ,  4) {A"(P) A * ( 4  A*( - P - 4 + 4 9  4Q) 
P A  

x 4 -P - Q )  + A*@) A*(@ 4 P  + a) + A*(P + Q )  4 P )  
+ %(P, 4) {A*( - Q )  A*(P + Q )  4 P )  + A*@) 

x A@+ Q )  4 - QN + * * *  (6.23) 
where 

'(" ') = " (d(p) d(p+q)  d(q)) "'(1 + d ( p ) d ( q ) ) ( p . q )  

The  formalism enables the calculation of the structure factor S(Q,w) in terms of 
the density excitations and their mutual interactions. It is of course an open 
question as to whether the perturbation theory is convergent. 

6.3.2. A n  approximate waaefunction for density fluctuations 
I n  $6.2 we showed that considerable progress has been achieved by using 

variational techniques for the calculation of the static structure factor S(Q). 
Similar approaches have been adopted in treating the density excitations. The  
first approach was that of Bijl (1940). Feynman suggested on the basis of plausible 
arguments that an appropriate wavefunction for a single excitation of wave vector q 
is given by 

I Q )  = (s(Q)>-l'z P(4)Y (6.24) 
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where p ( q )  is the density operator and Y is the wavefunction of the ground state. 
With this wavefunction the excitation energy of the system is given by 

4 4  = (QIHIQ)-(~IHlW 

(6.25) 

Since the phonon wavefunction was not proven but merely guessed, equation (6.25) 
is expected to give an energy which is larger than that of the real excitations. This 
is indeed the case as shown in figure 55. I t  is also of interest to comment on the 

1-0 2.0 3.0 
Wave vector, Q (11 

Figure 5 5 .  The energy of the elementary excitations in liquid helium: -, the experimental 
curve (figure 9); - , the Feynman excitation curve w F ( q ) ;  - - - -  , the curve 
obtained by Jackson and Feenberg (1 962) using the matrix elements, equation (6.27) 
and Brillouin perturbation theory. 

similarity between equations (6.25) and (6.22); S(q) of the former plays the role of 
d(q )  in the latter. Since the Feynman expression for the energy of an excitation is 
approximately twice as large as that found experimentally near the roton minimum, 
it is pertinent to examine improvements to the wavefunction (6.24). Feynman and 
Cohen (1956) introduced backflow in order to improve the wavefunction. This is 
equivalent to the introduction of interactions between the Feynman excitations 
(Miller et al 1962). The  theory of these interactions was developed systematically 
by Jackson and Feenberg (1961, 1962). 

If we introduce a Feynman excitation creation operator by A*(q) = (S(q))l'~ p(q ) ,  
then the Feynman theory is equivalent to the use of an effective hamiltonian 
H,+HF, where H, is the hamiltonian in the absence of excitations and 

H P  = 75,wF(q) A*(q) A(q)* 
Q 

The remainder of the hamiltonian gives rise to interactions between the excitations. 
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Jackson and Feenberg (1962) suggest that the most important terms in 
H -  Ho - HF = SH, give rise to a coupling between a single excitation (Q) and pairs 
of excitations with wave vectors p and (Q - p ) .  Alternatively SH may be rewritten 
in the form 

SH = V ( Q , P )  W ( P )  A*(Q -P> + A*(Q) 0) A(Q -P>>* 
Q,P 

The  analysis of Jackson and Feenberg is then concerned with evaluation of V(q,p) .  
The  part of the matrix elements dependent on H -  H,, may be evaluated directly to 
give 

x {Q 9 (Q -P) S ( P )  + Q .PS(Q -P>> (6.26) 

but the remainder which is dependent upon HF gives rise to a three-particle 
correlation function. If this is decoupled by the convolution approximation then 

Adding these two results and using equation (6.25) for O J ~ ( Q )  gives 

x {Q (Q -PI S ( P )  + Q .PS(Q -PI - q2 S(Q -PI S(P)>.  (6.27) 

This result is analogous to the form of the interaction deduced in equation (6.23) 
and we shall discuss the similarity in more detail in the next section. 

Lee (1967) and Lai et aZ(1970) have further developed this approach and have 
derived expressions for the term in the hamiltonian involving four excitations with 
the aid of the convolution approximation, and have also taken account of the lack 
of orthogonality between the different states. They have specifically applied their 
results to an evaluation of the dispersion relation in the small q limit. 

I n  view of the interest in the interactions between four rotons, $5.3.4, it is 
worthwhile to calculate the roton-roton interactions from their expressions. The  
result is particularly simple if we consider the scattering of rotons with wave 
vectors ( p +  Q/2) and ( - p +  Q/2) into two rotons with wave vectors ( p ' +  Q/2) 
and ( - p ' +  Q/2). Their interaction then reduces to 

Since S(qR), the value of S(q) at the roton minimum, is larger than unity this 
interaction is attractive and depends only on the total wave vector of the pair of 
rotons. I n  particular for the pairs created in a Raman scattering experiment, 
Q r O ,  there is no interaction between the excitations, cf $5.3.3. For a total wave 
vector Q = 1 A-I, the interaction is attractive with a strength of CT 6 x erg ~ m - ~ ,  
which is the same order of magnitude as that discussed in 85.3.4 but somewhat 
larger than expected. The  detailed form of this interaction is quite different from 
that deduced from the backflow models of Yau and Stephen (1971) and Xagai et aZ 
(1972) and we must await further developments before we can accurately calculate 
roton-roton interactions. In  particular, although the interaction obtained by 
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Lai e t  a1 is attractive for rotons, when the excitations have wave vectors which differ 
appreciably from the roton wave vector, qR, the interaction becomes repulsive. 

6.3.3. The self-eitergy of the density response. The self-energy for the density 
fluctuations may be obtained from the hamiltonians deduced either by Sunakawa 
et al (1969), equation (6.23), or by Jackson and Feenberg (1962)) equation (6.26). 
In  the latter case the self-energy is given by 

P 
(6.28) 

In  the former case the interaction term is more complicated and in particular the 
terms containing A* A* A appear with different coefficients from the A* A* A* 
terms so that the two self-energy diagrams shown in figure 56 must be treated 

Figure 56. The two distinct self-energy diagrams which contribute in the theory of Sunakawa 
et a1 (1969). Only diagram (a) contributes in the Jackson and Feenberg (1962) theory. 

separately. The  self-energy is then obtained from equation (6.23) after some 
algebra to give equation (6.28) but with wF(p)  replaced by w o ( p )  and the matrix 
element V ( p  - q) replaced by 

This result is very similar to the Jackson and Feenberg result, equation (6.28), 
except that firstly d ( q )  replaces the structure factor S(q) throughout and secondly 
the final term in equation (6.27) is missing in equation (6.29). I n  equation (6.27) this 
term arose because it was necessary to subtract the quadratic part of the hamiltonian 
to obtain that part of H which acts as a perturbation, whereas in the theory of 
Sunakawa et a1 we have directly computed the perturbation. We believe that 
Sunakawa et a1 are in error in their development of perturbation theory at this 
point. Likewise their statement that conventional perturbation theory diverges 
with their interaction is also incorrect, possibly because of their incorrect evaluation 
of the two diagrams shown in figure 56. 

The Van Hove structure factor S(q,w) is then obtained in terms of the self- 
energy as 

(6.30) 
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where w(q) is the excitation energy, w,,(~), equation (6.22), in the theory of Sunakawa 
et a1 and the Feynman energy, w F ( q ) ,  equation (6.25), in the theory of Jackson and 
Feenberg. 

The  complex self-energy therefore determines the dynamic structure factor and 
evaluation of the lowest order term (6.28) is dependent upon a knowledge of both 
the matrix elements and the frequencies w ( p ) .  We have seen above that both the 
theories developed for the matrix elements give similar results and so we may have 
some confidence in their form. The  dependence of the structure factor on the 
density of two-phonon states has recently been discussed by Iwamoto (1970), 
Jackson (1971) and by Zawadowski et a1 (1972). Unfortunately Iwhmoto and 
Zawadowski et a1 discuss their results using the microscopic theory and with the 
Bogoliubov approximation of 3 6.1.2. Since this is certainly an inadequate theory 
we believe, following Griffin (1972), that it is preferable to consider their theories 
and density theories. The  hamiltonian represents the density fluctuations and their 
interactions, which do not then bear any simple relationship to the interactions 
between atoms. 

I n  particular there is no simple relation connecting the cubic and quartic terms 
in the hamiltonian (8, and g, of Zawadowski et a1 (1972)). 

Iwamoto (1970) discusses the form of M ( q , w )  in a qualitative manner and 
concludes that it is possible for the theory to produce a sharp response corresponding 
to well defined excitations and a broad continuum as found experimentally. 

Zawadowski et a1 (1972) make the reasonable assumption that the perturbation 
theory will be improved if w F ( p )  etc in equation (6.28) is replaced by the observed 
excitation frequencies ~ ( q ) .  They then further assume that the integrals over p 
are dominated by the contributions from the rotons and furthermore that the roton 
dispersion relation is a parabola. They then show that 

w > 2 4  (6.31) 

= o  w<2A I 
where K is a constant and the dispersion relation for the rotons is parabolic up to 
frequencies of A + D. 

The real part of the self-energy diverges logarithmically as w -+ 28. Equation 
(6.30) then shows that as o increases there will always be a solution for w less than 
2A and that for increasing w(q) the solution will approach closer to 2A. This 
result led Pitaevskii (1959) to suggest that the dispersion relation would approach 
2A exponentially. Zawadowski et a1 (1972) discuss the effect on equation (6.31) of 
both a finite roton lifetime and of attractive roton-roton interactions. The  former 
suppresses the singularity in the real part of M ( q , w )  and, is of importance when 
I w - 213 I is comparable with the roton half-width. Attractive roton-roton inter- 
actions give rise to a marked change in the two-roton continuum, as shown in figure 
57, and also, for any nonzero attractive roton-roton interaction, to a bound state. 
Zawadowski et a1 then proceed to calculate the dynamic structure factor with this 
model for various different values of the parameters in the theory and to show that 
roton-roton interactions and the magnitude of the coefficient K ,  which is determined 
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by the strength of the interaction between three excitations, both have a considerable 
influence on the form of S ( q ,  U ) .  In figure 58 we show the results of some of their 
calculations. 

2 . 0 t  il i 

6 
Energy,< 

Figure 57. The approximate two-roton density of states at finite momentum q, plotted against 
energy, E = (w - 2A)/20. The dotted curve is the unperturbed result while the full 
and broken curves include both roton-roton attractive interactions, g;, and a roton 
linewidth y .  From Zawadowski et a1 (1972). 
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Figure 58. The theoretical S(q, w ) ,  pl(K, E )  for various values of wF(q) = (n + 2A)jA. The 
vertical broken lines show the delta functions which would occur if M(q, w )  = 0, and 
the calculations include both roton-roton interactions and a finite roton lifetime. 
The  unshaded regions correspond to the one-phonon scattering of 0 3 and the shaded 
regions to the multiphonon scattering. From Zawadowski et a1 (1972). 

Although Zawadowski et a1 (1972) have certainly demonstrated that roton- 
roton interactions may play an important role in determining S ( q ,  U), they have by 
no means proved this. The  effects of including the p and q dependent matrix 
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elements, V(a ,  p ) ,  are largely unknown, as are the effect on their results of using 
a more realistic form for the dispersion relation. Despite these deficiencies the work 
of Zawadowski et a1 (1972) is certainly the most promising line of progress at 
present towards even a phenomenological theory of S(4, w )  in liquid helium. 

Jackson (1969) has used a similar approach to discuss the behaviour of S(4, w )  
at very large momentum transfers. He uses the form of interaction between the 
excitations given by equation (6.28) and then calculates the self-energy iW(4, w )  
with the aid of approximate Green’s functions for S(4,w). He then uses these 
approximate Green’s functions to further improve the original calculation until 
selfconsistency is obtained. A completely selfconsistent calculation is impractical 
and he finds it necessary to make some approximations. His results show, however, 
that S(4,w) is peaked around w = kq2/2M, that the width of the spectrum is 
proportional to 4, and that the calculated shape of the spectrum has large wings 
before decreasing exponentially as I w - kp2/2M I increases. Even though the widths 
of the spectra are only about one third that obtained experimentally, the results are 
important because they stress the importance of performing a selfconsistent 
calculation. The  perturbation theory result without selfconsistency yields a width 
which is independent of 4. The theory is, therefore, qualitatively but not 
quantitatively in accord with the results of 5 3. 

6.3.4. Results of the theory and temperatuue dependence of the roton spectrum. 
Numerical calculations of the spectrum of elementary excitations have been made 
using this formalism by Jackson and Feenberg (1962), Lee (1967) and Lai et al 
(1970). The  last two sets of authors concentrated on the small 4 limit and on the 
evaluation of the dispersion parameter y’ ,  defined by the equation 

(6.32) 

Evaluation of the second-order perturbation result as described in the previous 
section together with S(4) obtained from Campbell and Feenberg (1969) leads to 
7’ = 0.46 a2. Lai et a1 (1970) also evaluate the contribution of six higher order 
terms in perturbation theory and find that their contribution to y‘ is considerably 
smaller, namely 0.133 A2, suggesting that the perturbation theory for the density 
fluctuations is not rapidly convergent. 

The  experimental results described in $3.3.2 give y’ = 1.5 i 0.2 A2, considerably 
larger than any of the calculations. 

Jackson and Feenberg (1962) calculated the excitation spectrum for the density 
fluctuations by solving the implicit equation 

4 4 )  = + 1W(4,w(4)) 

and using the Feynman excitation frequencies in their evaluation of equation 
(6.28) for M ( 4 ,  U ) .  The static structure factor was obtained from the measurements 
of Goldstein and Reekie (1955). The  results, which are shown in figure 55, show 
that the agreement between theory and experiment is not very good. Lee (1967) 
reports on similar calculations with Massey’s (1966) theoretical S(4) which give 
somewhat larger discrepancies with experiment. 

In  a recent series of papers Ruvalds (1971), Jackle (1972), Takeno (1972) and 
Nagai (1973) have studied the temperature dependence of the roton energies, 
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9 3.4.2. The  theory considers the effect of attractive roton-roton interactions 
between four rotons. This arises from the quartic term in the expansion of the 
hamiltonian in terms of creation and destruction operators for density fluctuations 
and was also discussed in $5.3.4. Ruvalds, Jackle and Takeno all calculate the 
effect of this term using first-order perturbation theory performed selfconsistently 
and find reasonable agreement with the experimental results, if the interaction is 
attractive and has a strength of about 5 x erg ~ m - ~ ,  which is considerably 
larger than the strength estimated in $5.3.3. Nagai discusses the same problem with 
a T matrix multiple scattering formalism, but finds it difficult to obtain a form of 
interaction which is consistent with both the line width and frequency of the 
rotons as a function of temperature. 

All of these calculations have neglected the effect of the cubic term in the 
expansion of the hamiltonian discussed in the preceding few sections. The  
calculation of the self-energy in $ 6.3.3 was performed at absolute zero but may be 
readily extended to finite temperature when additional terms occur which are 
proportional to the occupation numbers of the excitations. This contribution will 
tend to decrease the frequency of the rotons with increasing temperature. Further- 
more, since the calculations of Jackson and Feenberg (1962), figure 55, show that 
at absolute zero the self-energy correction arising from the cubic term is about 
10.0 K, whereas the binding energy of a bound two-roton state is certainly less than 
0.5 K, it would seem more likely that the temperature dependence of the rotons 
arises from changes in the cubic rather than in the quartic contribution to the 
self-energy. 

The  cubic term will also give rise to a contribution to the line width of the 
rotons, but in view of the difficulty in conserving both energy and momentum, it is 
quite likely that the dominant contribution to the roton line width arises from the 
quartic terms. In  conclusion we can see no reason for the neglect of the cubic 
interactions in the treatments of Ruvalds, Jackle, Takeno and Nagai, and expect 
that in fact a large part of the temperature dependence arises from the cubic 
interactions, as discussed at T = 0 by Jackson and Feenberg (1962). 

Ruvalds (1971) and Jackle (1972) then proceed to calculate the thermodynamic 
properties of liquid helium with their model. They obtain reasonable agreement 
presumably because their models accurately describe the temperature dependence 
of the rotons. Ruvalds also suggests that the rotons may act as a ‘soft-mode’ for 
the superfluid-normal phase transition. This seems to us to be incorrect because 
it is known that the second sound velocity becomes zero at this phase transition so 
that second sound is the ‘soft-mode’. 

7. Conclusions 
Despite all the work described in this article, the most certain conclusion must 

be that liquid helium will continue to fascinate both experimental and theoretical 
physicists for many years. We have shown in $02 and 3 that there are certainly 
more detailed and extensive x ray and neutron scattering measurements available 
for liquid helium than for any other material. At about 1.1 K and the saturated 
vapour pressure both S(Q) and S(Q, U )  have been measured with greater precision 
than for any other material. For example the measurements provide reasonable 
confirmation of the zero and first sum rules and extend from Q ~ 0 . 3  8-1 to 
Q ~ 2 0  that is from the long wavelength collective region to the very short 
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wavelength independent particle region. Furthermore certain aspects of the 
scattering have been studied as a function of temperature and pressure. 

Likewise ultrasonic measurements have been performed, as described in $ 4, 
in more detail than for any other material. The  frequency, pressure and temperature 
dependences have all been accurately measured. The  light scattering has also been 
studied although not so extensively because its history is only three years old 
instead of the twenty or more years for the other techniques. 

In  view of this wealth of experimental information it would not be surprising 
if experimental work ceased, but we know this will not be the case. Both the Chalk 
River and Brookhaven neutron scattering groups are planning further experiments 
to study the pressure and temperature dependence of S(Q, w )  more carefully. 
We hope that the x ray scattering measurements of S(Q) will be performed as a 
function of pressure and temperature. Likewise as we indicated in $5.3.3, there 
is an urgent need for more Raman scattering measurements in order to elucidate 
the magnitude of the interactions between the rotons in liquid helium. Further 
measurements of the Raman scattering at higher pressures would also be in- 
formative. 

The  theory of the excitations in liquid helium is far less satisfactory. Despite 
all the experimental information and the numerous theoretical discussions there 
is still no convincing theory of the excitations which begins with the known inter- 
action between helium atoms. Several elegant formalisms have been developed but 
in any detailed application some approximations must be made, and a suitable set 
of approximations are still unknown. In  the same way that the BCS theory of 
superconductivity picked out the important terms for the origin of superconductivity 
the theory of superfluidity is still in need of the insight required to pick out the 
terms of importance in liquid helium. 

A large part of the theoretical work on liquid helium adopts a less ambitious 
approach and employs a semi-phenomenological hamiltonian for the excitations 
and their interactions. Liquid helium then provides a very suitable system for 
testing theories of the interactions between excitations. Using this approach 
considerable progress has been made in understanding S(Q, U ) ,  the Raman 
scattering and the ultrasonic attenuation. Unfortunately further work is needed in 
all of these examples because of the failure of different workers to consider all 
possible effects. In  the ultrasonic attenuation, $4, it is now known that both 
anomalous dispersion of the phonon dispersion curve at low pressure and multiple 
scattering vertex corrections play important roles, but theoretical work has as yet 
concentrated on one or other of these problems and there is not a completely 
satisfactory theoretical treatment of both effects. 

Likewise in the theory of the Raman scattering, the shape of the spectrum may 
be dependent upon both the interaction between the light and the excitations and 
on the interactions between the excitations. As described in $ 5  theoretical work 
has tended to concentrate on one of these explanations of the results to the exclusion 
of the other. 

There is therefore in almost all aspects of the confrontation between experiment 
and theory in liquid helium more work to be done in order to clarify the theoretical 
position. In  many cases this work requires a detailed consideration of several 
different explanations of the observed results and a careful discussion of their 
relative importance. Further a much clearer distinction needs to be made between 
the genuinely microscopic theories and the phenomenological Landau theories of 
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the excitations. Clearly we can anticipate considerable progress in our under- 
standing of the structure, excitations and their interactions during the next few 
years, and hope that this review will provide at least some stimulation for that 
progress. 
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